Exploring Deep Learning Techniques for Glaucoma Detection: A
Comprehensive Review
- URL: http://arxiv.org/abs/2311.01425v1
- Date: Thu, 2 Nov 2023 17:39:40 GMT
- Title: Exploring Deep Learning Techniques for Glaucoma Detection: A
Comprehensive Review
- Authors: Aized Amin Soofi, Fazal-e-Amin
- Abstract summary: Glaucoma is one of the primary causes of vision loss around the world.
Recent developments in deep learning approaches demonstrate potential in automating glaucoma detection.
The use of deep learning algorithms may significantly improve the efficacy, usefulness, and accuracy of glaucoma detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Glaucoma is one of the primary causes of vision loss around the world,
necessitating accurate and efficient detection methods. Traditional manual
detection approaches have limitations in terms of cost, time, and subjectivity.
Recent developments in deep learning approaches demonstrate potential in
automating glaucoma detection by detecting relevant features from retinal
fundus images. This article provides a comprehensive overview of cutting-edge
deep learning methods used for the segmentation, classification, and detection
of glaucoma. By analyzing recent studies, the effectiveness and limitations of
these techniques are evaluated, key findings are highlighted, and potential
areas for further research are identified. The use of deep learning algorithms
may significantly improve the efficacy, usefulness, and accuracy of glaucoma
detection. The findings from this research contribute to the ongoing
advancements in automated glaucoma detection and have implications for
improving patient outcomes and reducing the global burden of glaucoma.
Related papers
- Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - A Comprehensive Review of Artificial Intelligence Applications in Major
Retinal Conditions [6.728206045751265]
This paper provides a systematic survey of retinal diseases that cause visual impairments or blindness.
It covers both clinical and automated approaches for detecting retinal disease, focusing on studies from the past decade.
arXiv Detail & Related papers (2023-11-22T22:10:53Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
Glaucoma is the leading cause of irreversible blindness worldwide.
Recent advances in computer vision and deep learning have demonstrated the potential for automated assessment.
We survey recent studies on AI-based glaucoma diagnosis using fundus, optical coherence tomography, and visual field images.
arXiv Detail & Related papers (2023-07-31T09:49:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
Glaucoma is a leading cause of irreversible vision impairment globally.
Fundus imaging is non-invasive and low-cost.
Can artificial intelligence automatically find the boundaries of the optic cup and disc.
arXiv Detail & Related papers (2022-04-12T07:47:13Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
We present a novel algorithm for cataract detection using near-infrared eye images.
Deep learning-based eye segmentation and multitask network classification networks are presented.
arXiv Detail & Related papers (2021-10-06T08:10:28Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Regression and Learning with Pixel-wise Attention for Retinal Fundus
Glaucoma Segmentation and Detection [3.7687214264740994]
We present two deep learning-based automated algorithms for glaucoma detection and optic disc and cup segmentation.
We utilize the attention mechanism to learn pixel-wise features for accurate prediction.
arXiv Detail & Related papers (2020-01-06T23:54:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.