論文の概要: MRI Patterns of the Hippocampus and Amygdala for Predicting Stages of Alzheimer's Progression: A Minimal Feature Machine Learning Framework
- arxiv url: http://arxiv.org/abs/2501.05852v1
- Date: Fri, 10 Jan 2025 10:47:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:04.364268
- Title: MRI Patterns of the Hippocampus and Amygdala for Predicting Stages of Alzheimer's Progression: A Minimal Feature Machine Learning Framework
- Title(参考訳): アルツハイマー進行の予測のための海馬と扁桃体MRIパターン:最小機能機械学習フレームワーク
- Authors: Aswini Kumar Patra, Soraisham Elizabeth Devi, Tejashwini Gajurel,
- Abstract要約: 本研究では、構造的MRIデータを活用する最小機能機械学習フレームワークを提案し、興味のある領域として海馬と扁桃体に焦点を当てた。
このフレームワークは、特徴選択による次元の呪いに対処し、地域固有のボクセル情報を利用し、ノイズを低減して分類性能を向上させる革新的なデータ組織を実装している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Alzheimer's disease (AD) progresses through distinct stages, from early mild cognitive impairment (EMCI) to late mild cognitive impairment (LMCI) and eventually to AD. Accurate identification of these stages, especially distinguishing LMCI from EMCI, is crucial for developing pre-dementia treatments but remains challenging due to subtle and overlapping imaging features. This study proposes a minimal-feature machine learning framework that leverages structural MRI data, focusing on the hippocampus and amygdala as regions of interest. The framework addresses the curse of dimensionality through feature selection, utilizes region-specific voxel information, and implements innovative data organization to enhance classification performance by reducing noise. The methodology integrates dimensionality reduction techniques such as PCA and t-SNE with state-of-the-art classifiers, achieving the highest accuracy of 88.46%. This framework demonstrates the potential for efficient and accurate staging of AD progression while providing valuable insights for clinical applications.
- Abstract(参考訳): アルツハイマー病(AD)は、早期軽度認知障害(EMCI)から後期軽度認知障害(LMCI)、最終的にADまで、異なる段階を経て進行する。
これらのステージの正確な同定、特にLMCIとEMCIを区別することは、プレデーション治療の開発に不可欠であるが、微妙で重なり合う画像特徴のため、依然として困難である。
本研究では、構造的MRIデータを活用する最小機能機械学習フレームワークを提案し、興味のある領域として海馬と扁桃体に焦点を当てた。
このフレームワークは、特徴選択による次元の呪いに対処し、地域固有のボクセル情報を利用し、ノイズを低減して分類性能を向上させる革新的なデータ組織を実装している。
この手法はPCAやt-SNEのような次元減少技術と最先端の分類器を統合し、88.46%の精度を達成する。
このフレームワークは、AD進行の効率的かつ正確なステージングの可能性を示し、臨床応用に有用な洞察を提供する。
関連論文リスト
- AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:44:28Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
我々は,3D Residual Attention Deep Neural Network(3D ResAttNet)を導入し,SMRIスキャンによるエンドツーエンド学習によるアルツハイマー病早期診断のためのコンピュータ支援手法を提案する。
実験結果から,提案手法は精度と一般化性の観点から,最先端モデルに対して競争上の優位性があることが示唆された。
論文 参考訳(メタデータ) (2020-08-10T11:08:55Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。