論文の概要: Towards Dequantizing Quantum Signal Processing
- arxiv url: http://arxiv.org/abs/2311.01533v1
- Date: Thu, 2 Nov 2023 18:30:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 16:16:13.887179
- Title: Towards Dequantizing Quantum Signal Processing
- Title(参考訳): 量子信号処理の定式化に向けて
- Authors: Gumaro Rendon
- Abstract要約: ここでの作業は、$rm polylog(1/epsilon)$を保ちながら、$t$で準線形のコストスケーリングを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The work here enables quasi-linear cost-scaling with $t$ while keeping ${\rm
polylog} (1/\epsilon)$ scaling and no extra block-encoding qubits, where
$\epsilon$ is the algorithmic error. This work opens up the possibility for
off-loading signal processing with the use of low-weight Fourier expansion
which avoids the Gibbs phenomenon and has low $1$-norm on the coefficients.
- Abstract(参考訳): ここでの作業は、${\rm polylog} (1/\epsilon)$のスケーリングと、$\epsilon$がアルゴリズムエラーである余分なブロックエンコーディングキュービットを保ちながら、$t$の準線形コストスケーリングを可能にする。
この研究は、ギブス現象を回避し係数に1ドルノルムの少ない低重量フーリエ展開を用いて、信号処理をオフロードする可能性を開く。
関連論文リスト
- Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity [15.18055488087588]
上記の凸定式化を$widetildeO(sum_i=1n d_i log (1 /epsilon))$グラデーション計算で$epsilon$-accuracyに最小化するアルゴリズムを与える。
我々の主な技術的貢献は、カットプレーン法とインテリアポイント法を組み合わせた新しい組み合わせにより、各イテレーションで$f_i$項を選択する適応的な手順である。
論文 参考訳(メタデータ) (2022-08-07T20:53:42Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
リッジ回帰問題に対する1+varepsilon$近似解を計算するスケッチベース反復アルゴリズムを提案する。
また,このアルゴリズムがカーネルリッジ回帰の高速化に有効であることを示す。
論文 参考訳(メタデータ) (2022-04-13T22:18:47Z) - On the Complexity of Dynamic Submodular Maximization [15.406670088500087]
濃度制約の下で$(0.5+epsilon)$-approximateを維持できるアルゴリズムは、任意の定数$epsilon>0$に対して、$mathitpolynomial$ in $n$というアモータイズされたクエリ複雑性を持つ必要がある。
これは、(0.5-epsilon)$-approximation with a $mathsfpolylog(n)$ amortized query complexityを達成している[LMNF+20, Mon20]の最近の動的アルゴリズムとは対照的である。
論文 参考訳(メタデータ) (2021-11-05T00:04:29Z) - On Robust Optimal Transport: Computational Complexity, Low-rank
Approximation, and Barycenter Computation [14.80695185915604]
我々は、最適なトランスポートの2つの頑健なバージョン、$textitRobust Semi-constrained Optimal Transport$ (RSOT) と $textitRobust Unconstrained Optimal Transport$ (ROT) を考える。
離散設定における両方の問題に対して、$widetildemathcalO(fracn2varepsilon)$timeでRSOTとROTの$varepsilon$-approximationsを生成するSinkhornベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-13T03:55:52Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
最初に、バニラ座標の昇華の単純な変種を証明し、Coordinate-Ascent+ と呼ぶ。
次にCoordinate-Ascent++を提案し、同じ回数のイテレーションを実行しながら(1-1/e-varepsilon)$-approximationを保証する。
Coordinate-Ascent++の各ラウンドの計算は容易に並列化でき、マシン当たりの計算コストは$O(n/sqrtvarepsilon+nlog n)$である。
論文 参考訳(メタデータ) (2020-06-21T06:57:59Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - Fast digital methods for adiabatic state preparation [0.0]
ゲート型量子コンピュータにおいて,逆誤差の複雑多元対数を伴う断熱状態生成のための量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-08T18:00:01Z) - Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast
Algorithm [100.11971836788437]
固定支持ワッサーシュタインバリセンタ問題(FS-WBP)について検討する。
我々は,有望な反復的ブレグマン射影 (IBP) アルゴリズムであるtextscFastIBP の,証明可能な高速なテキスト決定論的変種を開発する。
論文 参考訳(メタデータ) (2020-02-12T03:40:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。