Security Proof for Variable-Length Quantum Key Distribution
- URL: http://arxiv.org/abs/2311.01600v3
- Date: Fri, 10 May 2024 19:14:01 GMT
- Title: Security Proof for Variable-Length Quantum Key Distribution
- Authors: Devashish Tupkary, Ernest Y. -Z. Tan, Norbert Lütkenhaus,
- Abstract summary: We present a security proof for variable-length QKD in the Renner framework against IID collective attacks.
Our proof can be lifted to coherent attacks using the postselection technique.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a security proof for variable-length QKD in the Renner framework against IID collective attacks. Our proof can be lifted to coherent attacks using the postselection technique. Our first main result is a theorem to convert a series of security proofs for fixed-length protocols satisfying certain conditions to a security proof for a variable-length protocol. This conversion requires no new calculations, does not require any changes to the final key lengths or the amount of error-correction information, and at most doubles the security parameter. Our second main result is the description and security proof of a more general class of variable-length QKD protocols, which does not require characterizing the honest behaviour of the channel connecting the users before the execution of the QKD protocol. Instead, these protocols adaptively determine the length of the final key, and the amount of information to be used for error-correction, based upon the observations made during the protocol. We apply these results to the qubit BB84 protocol, and show that variable-length implementations lead to higher expected key rates than the fixed-length implementations.
Related papers
- Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Phase error rate estimation in QKD with imperfect detectors [0.0]
We present a finite-size security proof of the decoy-state BB84 QKD protocol against coherent attacks.
We apply this result to the case of detectors with imperfectly characterized basis-efficiency mismatch.
arXiv Detail & Related papers (2024-08-30T15:23:21Z) - Security of hybrid BB84 with heterodyne detection [0.0]
Quantum key distribution (QKD) promises everlasting security based on the laws of physics.
Recent hybrid QKD protocols have been introduced to leverage advantages from both categories.
We provide a rigorous security proof for a protocol introduced by Qi in 2021, where information is encoded in discrete variables.
arXiv Detail & Related papers (2024-02-26T19:00:01Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Finite-Size Security for Discrete-Modulated Continuous-Variable Quantum
Key Distribution Protocols [4.58733012283457]
We present a composable finite-size security proof against independently and identically distributed collective attacks for a general DM CV-QKD protocol.
We extend and apply a numerical security proof technique to calculate tight lower bounds on the secure key rate.
Results show that our security proof method yields secure finitesize key rates under experimentally viable conditions up to at least 72km transmission distance.
arXiv Detail & Related papers (2023-01-20T17:16:21Z) - Succinct Classical Verification of Quantum Computation [30.91621630752802]
We construct a classically succinct interactive argument for quantum computation (BQP)
Our protocol is secure assuming the post-quantum security of indistinguishability obfuscation (iO) and Learning Errors (LWE)
arXiv Detail & Related papers (2022-06-29T22:19:12Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Security of quantum key distribution from generalised entropy
accumulation [2.1030878979833467]
We provide a formal framework for general quantum key distribution protocols.
We show that security against general attacks reduces to security against collective attacks.
Our proof relies on a recently developed information-theoretic tool called generalised entropy accumulation.
arXiv Detail & Related papers (2022-03-09T19:00:07Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.