Noise-Agnostic Quantum Error Mitigation with Data Augmented Neural Models
- URL: http://arxiv.org/abs/2311.01727v2
- Date: Thu, 03 Apr 2025 13:30:14 GMT
- Title: Noise-Agnostic Quantum Error Mitigation with Data Augmented Neural Models
- Authors: Manwen Liao, Yan Zhu, Giulio Chiribella, Yuxiang Yang,
- Abstract summary: We build a neural model that achieves quantum error mitigation without prior knowledge of the noise and without training on noise-free data.<n>Our approach applies to quantum circuits and to the dynamics of many-body and continuous-variable quantum systems.
- Score: 9.023862258563893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error mitigation, a data processing technique for recovering the statistics of target processes from their noisy version, is a crucial task for near-term quantum technologies. Most existing methods require prior knowledge of the noise model or the noise parameters. Deep neural networks have a potential to lift this requirement, but current models require training data produced by ideal processes in the absence of noise. Here we build a neural model that achieves quantum error mitigation without any prior knowledge of the noise and without training on noise-free data. To achieve this feature, we introduce a quantum augmentation technique for error mitigation. Our approach applies to quantum circuits and to the dynamics of many-body and continuous-variable quantum systems, accommodating various types of noise models. We demonstrate its effectiveness by testing it both on simulated noisy circuits and on real quantum hardware.
Related papers
- Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement [35.436358464279785]
This paper introduces a novel quantum diffusion model designed for Noisy Intermediate-Scale Quantum (NISQ) devices.
By leveraging quantum entanglement and superposition, this approach advances quantum generative learning.
arXiv Detail & Related papers (2024-11-24T20:14:57Z) - Quantum noise modeling through Reinforcement Learning [38.47830254923108]
We introduce a machine learning approach to characterize the noise impacting a quantum chip and emulate it during simulations.
Our algorithm leverages reinforcement learning, offering increased flexibility in reproducing various noise models.
The effectiveness of the RL agent has been validated through simulations and testing on real superconducting qubits.
arXiv Detail & Related papers (2024-08-02T18:05:21Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum time dynamics mediated by the Yang-Baxter equation and artificial neural networks [3.9079297720687536]
This study explores new strategies for mitigating quantum errors using artificial neural networks (ANN) and the Yang-Baxter equation (YBE)
We developed a novel method that combines ANN for noise mitigation combined with the YBE to generate noisy data.
This approach effectively reduces noise in quantum simulations, enhancing the accuracy of the results.
arXiv Detail & Related papers (2024-01-30T15:50:06Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Volumetric Benchmarking of Quantum Computing Noise Models [3.0098885383612104]
We present a systematic approach to benchmark noise models for quantum computing applications.
It compares the results of hardware experiments to predictions of noise models for a representative set of quantum circuits.
We also construct a noise model and optimize its parameters with a series of training circuits.
arXiv Detail & Related papers (2023-06-14T10:49:01Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Non-Markovian noise sources for quantum error mitigation [0.0]
We present a non-Markovian model of quantum state evolution and a quantum error mitigation cost function tailored for NISQ devices.
Our findings reveal that the cost function for quantum error mitigation increases as the coupling strength between the quantum system and its environment intensifies.
arXiv Detail & Related papers (2023-02-10T05:10:27Z) - Quantum Noise-Induced Reservoir Computing [0.6738135972929344]
We propose a framework called quantum noise-induced reservoir computing.
We show that some abstract quantum noise models can induce useful information processing capabilities for temporal input data.
Our study opens up a novel path for diverting useful information from quantum computer noises into a more sophisticated information processor.
arXiv Detail & Related papers (2022-07-16T12:21:48Z) - Impact of quantum noise on the training of quantum Generative
Adversarial Networks [0.0]
We conduct a first study of the performance of quantum Generative Adversarial Networks (qGANs) in the presence of different types of quantum noise.
In particular, we explore the effects of readout and two-qubit gate errors on the qGAN training process.
arXiv Detail & Related papers (2022-03-02T10:35:34Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
We introduce $textitneural error mitigation$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables.
Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors.
Our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.
arXiv Detail & Related papers (2021-05-17T18:00:57Z) - Enhancing quantum models of stochastic processes with error mitigation [0.0]
We bridge the gap between theoretical quantum models and practical use with the inclusion of error mitigation methods.
It is observed that error mitigation is successful in improving the resultant expectation values.
While our results indicate that error mitigation work, we show that its methodology is ultimately constrained by hardware limitations in these quantum computers.
arXiv Detail & Related papers (2021-05-13T17:45:34Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.