論文の概要: Modeling the Uncertainty with Maximum Discrepant Students for
Semi-supervised 2D Pose Estimation
- arxiv url: http://arxiv.org/abs/2311.01770v1
- Date: Fri, 3 Nov 2023 08:11:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 14:46:34.946944
- Title: Modeling the Uncertainty with Maximum Discrepant Students for
Semi-supervised 2D Pose Estimation
- Title(参考訳): 半教師付き2次元ポーズ推定のための最大偏差学生の不確かさのモデル化
- Authors: Jiaqi Wu, Junbiao Pang, Qingming Huang
- Abstract要約: 半教師付きポーズ推定タスクにおける擬似ラベルの品質を推定する枠組みを提案する。
提案手法は,3つのデータセットに対する半教師付きポーズ推定の性能を向上させる。
- 参考スコア(独自算出の注目度): 57.17120203327993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised pose estimation is a practically challenging task for
computer vision. Although numerous excellent semi-supervised classification
methods have emerged, these methods typically use confidence to evaluate the
quality of pseudo-labels, which is difficult to achieve in pose estimation
tasks. For example, in pose estimation, confidence represents only the
possibility that a position of the heatmap is a keypoint, not the quality of
that prediction. In this paper, we propose a simple yet efficient framework to
estimate the quality of pseudo-labels in semi-supervised pose estimation tasks
from the perspective of modeling the uncertainty of the pseudo-labels.
Concretely, under the dual mean-teacher framework, we construct the two maximum
discrepant students (MDSs) to effectively push two teachers to generate
different decision boundaries for the same sample. Moreover, we create multiple
uncertainties to assess the quality of the pseudo-labels. Experimental results
demonstrate that our method improves the performance of semi-supervised pose
estimation on three datasets.
- Abstract(参考訳): 半教師付きポーズ推定は、コンピュータビジョンにとって事実上難しい課題である。
多くの優れた半教師付き分類法が出現しているが、これらの手法は通常、擬似ラベルの質を評価するために信頼を利用する。
例えば、ポーズ推定では、信頼度は、ヒートマップの位置がその予測の品質ではなく、キーポイントである可能性のみを表す。
本稿では,疑似ラベルの不確かさのモデル化の観点から,半教師ありポーズ推定タスクにおける擬似ラベルの品質を推定する簡易かつ効率的なフレームワークを提案する。
具体的には,双対平均教師枠組みの下で,2人の教師が同じサンプルに対して異なる決定境界を生成するように効果的に促すために,2つの最大偏差学生(mdss)を構築した。
さらに,疑似ラベルの品質を評価するための不確実性も複数作成する。
実験の結果, 3つのデータセットにおける半教師ありポーズ推定の性能が向上した。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Semi-supervised 2D Human Pose Estimation via Adaptive Keypoint Masking [2.297586471170049]
本稿では,サンプル中の情報を完全にマイニングし,より優れた推定性能が得られる適応型キーポイントマスキング法を提案する。
提案手法の有効性をCOCOとMPIIで検証し,最先端の半教師によるポーズ推定をそれぞれ5.2%と0.3%で上回った。
論文 参考訳(メタデータ) (2024-04-23T08:41:50Z) - Not Every Side Is Equal: Localization Uncertainty Estimation for
Semi-Supervised 3D Object Detection [38.77989138502667]
点雲からの半教師付き3Dオブジェクト検出は、少数のラベル付きデータと多数のラベルなしデータで検出器を訓練することを目的としている。
既存の方法は、各擬似境界ボックス全体を扱い、トレーニング中に各側面に等しい重要性を割り当てる。
3つの鍵設計からなる半教師付き3次元物体検出のためのサイドアウェアフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-16T09:08:03Z) - Denoising and Selecting Pseudo-Heatmaps for Semi-Supervised Human Pose
Estimation [38.97427474379367]
ラベルのないデータから学習するターゲットとして,信頼度の高い擬似熱マップを生成するための認知スキームを導入する。
評価された学生間の不確実性によって導かれる擬似熱マップから学習対象を選択する。
提案手法は,従来の半教師付きポーズ推定装置よりも優れていた。
論文 参考訳(メタデータ) (2023-09-29T19:17:30Z) - Semi-Supervised 2D Human Pose Estimation Driven by Position
Inconsistency Pseudo Label Correction Module [74.80776648785897]
i) 大規模モデルと軽量モデルの間で対話的なトレーニングを行う場合, 大規模モデルのガイドに擬似的な軽量モデルラベルを用いる。
位置整合性擬似ラベル補正モジュール(SSPCM)により駆動される半教師付き2次元ポーズ推定フレームワークを提案する。
学生モデルの性能向上のために,擬似キーポイント認識に基づく半教師付きカットオクルードを用いて,より硬く効果的なサンプルを生成する。
論文 参考訳(メタデータ) (2023-03-08T02:57:05Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
MTACと呼ばれる不確実な表情認識に対処するためのマルチタスク支援補正法を提案する。
具体的には、信頼度推定ブロックと重み付け正則化モジュールを用いて、固体試料をハイライトし、バッチ毎に不確かさサンプルを抑圧する。
RAF-DB、AffectNet、AffWild2データセットの実験は、MTACが合成および実際の不確実性に直面した際のベースラインよりも大幅に改善されていることを示した。
論文 参考訳(メタデータ) (2022-12-14T10:28:08Z) - Label Matching Semi-Supervised Object Detection [85.99282969977541]
半教師対象検出は,教師主導型自己学習の開発において大きな進歩を遂げている。
ラベルミスマッチ問題は、以前の研究でまだ完全に解明されていないため、自己学習中に重大な確証バイアスが生じる。
本稿では,2つの異なる相補的視点から,単純かつ効果的な LabelMatch フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-14T05:59:41Z) - Towards Semi-Supervised Deep Facial Expression Recognition with An
Adaptive Confidence Margin [92.76372026435858]
Ada-CM(Adaptive Confidence Margin)を学習し、ラベルのないすべてのデータを半教師付き深層表情認識に活用する。
すべてのラベルなしサンプルは、信頼スコアと適応的に学習された信頼マージンを比較して、2つのサブセットに分割される。
提案手法は最先端の性能,特に半教師付きベースラインを超越した性能を実現する。
論文 参考訳(メタデータ) (2022-03-23T11:43:29Z) - Double-Uncertainty Weighted Method for Semi-supervised Learning [32.484750353853954]
教師-学生モデルに基づく半教師付きセグメンテーションのための二重不確かさ重み付き手法を提案する。
ベイジアンディープラーニングを用いて教師モデルを訓練し,セグメンテーションの不確実性と特徴の不確実性を両立させる。
本手法は,2つの公開医療データセットにおいて,最先端の不確実性に基づく半教師付き手法よりも優れている。
論文 参考訳(メタデータ) (2020-10-19T08:20:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。