論文の概要: Semi-supervised 2D Human Pose Estimation via Adaptive Keypoint Masking
- arxiv url: http://arxiv.org/abs/2404.14835v1
- Date: Tue, 23 Apr 2024 08:41:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 14:51:00.737984
- Title: Semi-supervised 2D Human Pose Estimation via Adaptive Keypoint Masking
- Title(参考訳): 適応的キーポイントマスキングによる半教師付き2次元人物位置推定
- Authors: Kexin Meng, Ruirui Li, Daguang Jiang,
- Abstract要約: 本稿では,サンプル中の情報を完全にマイニングし,より優れた推定性能が得られる適応型キーポイントマスキング法を提案する。
提案手法の有効性をCOCOとMPIIで検証し,最先端の半教師によるポーズ推定をそれぞれ5.2%と0.3%で上回った。
- 参考スコア(独自算出の注目度): 2.297586471170049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human pose estimation is a fundamental and challenging task in computer vision. Larger-scale and more accurate keypoint annotations, while helpful for improving the accuracy of supervised pose estimation, are often expensive and difficult to obtain. Semi-supervised pose estimation tries to leverage a large amount of unlabeled data to improve model performance, which can alleviate the problem of insufficient labeled samples. The latest semi-supervised learning usually adopts a strong and weak data augmented teacher-student learning framework to deal with the challenge of "Human postural diversity and its long-tailed distribution". Appropriate data augmentation method is one of the key factors affecting the accuracy and generalization of semi-supervised models. Aiming at the problem that the difference of sample learning is not considered in the fixed keypoint masking augmentation method, this paper proposes an adaptive keypoint masking method, which can fully mine the information in the samples and obtain better estimation performance. In order to further improve the generalization and robustness of the model, this paper proposes a dual-branch data augmentation scheme, which can perform Mixup on samples and features on the basis of adaptive keypoint masking. The effectiveness of the proposed method is verified on COCO and MPII, outperforming the state-of-the-art semi-supervised pose estimation by 5.2% and 0.3%, respectively.
- Abstract(参考訳): 人間のポーズ推定はコンピュータビジョンの基本的な課題である。
大規模で正確なキーポイントアノテーションは、教師付きポーズ推定の精度を改善するのに役立つが、しばしば高価で入手が難しい。
半教師付きポーズ推定は、大量のラベル付けされていないデータを活用してモデル性能を向上させることで、ラベル付けされていないサンプルの問題を緩和する。
最新の半教師付き学習は、「人間の姿勢の多様性とその長期分布」の課題に対処するために、強くて弱いデータ強化教師学生学習フレームワークを採用するのが一般的である。
適切なデータ拡張手法は、半教師付きモデルの精度と一般化に影響を与える重要な要因の1つである。
本稿では,固定キーポイントマスキング拡張法において,サンプル学習の違いが考慮されない問題に着目し,適応キーポイントマスキング手法を提案する。
本稿では,モデルの一般化とロバスト性をさらに向上するために,適応的なキーポイントマスキングに基づくサンプルと特徴の混合を行うデュアルブランチデータ拡張方式を提案する。
提案手法の有効性をCOCOとMPIIで検証し,最先端の半教師によるポーズ推定をそれぞれ5.2%と0.3%で上回った。
関連論文リスト
- Multi-step Problem Solving Through a Verifier: An Empirical Analysis on
Model-induced Process Supervision [43.03988648915096]
データキュレーションを自動化する新しい手法であるMiPS(Model-induced Process Supervision)を導入する。
MiPSは、推論モデルを通じてこの解の完了をサンプリングし、正しい完了の比率として定義される精度を得ることによって中間段階を注釈する。
提案手法は,算数および符号化タスクにおける PaLM 2 の性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-02-05T00:57:51Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL)はラベル付きデータの不足に対する潜在的な解決策を提供する。
1次元心電図(PCG)分類におけるコントラスト学習の最適化を提案する。
トレーニング分布によっては、完全教師付きモデルの有効性が最大32%低下し、SSLモデルは最大10%低下し、場合によっては改善される。
論文 参考訳(メタデータ) (2023-12-01T11:06:00Z) - Modeling the Uncertainty with Maximum Discrepant Students for
Semi-supervised 2D Pose Estimation [57.17120203327993]
半教師付きポーズ推定タスクにおける擬似ラベルの品質を推定する枠組みを提案する。
提案手法は,3つのデータセットに対する半教師付きポーズ推定の性能を向上させる。
論文 参考訳(メタデータ) (2023-11-03T08:11:06Z) - Exploring Data Augmentations on Self-/Semi-/Fully- Supervised
Pre-trained Models [24.376036129920948]
本研究では,データ拡張が視力事前訓練モデルの性能に与える影響について検討する。
ランダム消去(Random Erasing)、CutOut(CutOut)、CutMix(CutMix)、MixUp(MixUp)という4種類のデータ拡張を適用します。
画像分類,オブジェクト検出,インスタンスセグメンテーション,セマンティックセグメンテーションなどの視覚タスクにおける性能について報告する。
論文 参考訳(メタデータ) (2023-10-28T23:46:31Z) - Denoising and Selecting Pseudo-Heatmaps for Semi-Supervised Human Pose
Estimation [38.97427474379367]
ラベルのないデータから学習するターゲットとして,信頼度の高い擬似熱マップを生成するための認知スキームを導入する。
評価された学生間の不確実性によって導かれる擬似熱マップから学習対象を選択する。
提案手法は,従来の半教師付きポーズ推定装置よりも優れていた。
論文 参考訳(メタデータ) (2023-09-29T19:17:30Z) - Semi-Supervised 2D Human Pose Estimation Driven by Position
Inconsistency Pseudo Label Correction Module [74.80776648785897]
i) 大規模モデルと軽量モデルの間で対話的なトレーニングを行う場合, 大規模モデルのガイドに擬似的な軽量モデルラベルを用いる。
位置整合性擬似ラベル補正モジュール(SSPCM)により駆動される半教師付き2次元ポーズ推定フレームワークを提案する。
学生モデルの性能向上のために,擬似キーポイント認識に基づく半教師付きカットオクルードを用いて,より硬く効果的なサンプルを生成する。
論文 参考訳(メタデータ) (2023-03-08T02:57:05Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。