論文の概要: Efficient Generalized Low-Rank Tensor Contextual Bandits
- arxiv url: http://arxiv.org/abs/2311.01771v3
- Date: Wed, 17 Jan 2024 08:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 20:14:02.723778
- Title: Efficient Generalized Low-Rank Tensor Contextual Bandits
- Title(参考訳): 汎用低ランクテンソル周波数帯域
- Authors: Qianxin Yi, Yiyang Yang, Shaojie Tang, Jiapeng Liu, Yao Wang
- Abstract要約: 本稿では,3つの特徴ベクトルから行動が生成され,テンソルで表現できる,低ランクな文脈帯域モデルを提案する。
探索と利用のトレードオフを効果的に実現するために,我々は「一般化低ランク部分空間を再定義する」という新しいアルゴリズムを導入する(G-LowTESTR)。
厳密な理論解析により、G-LowTESTRの後悔境界はベクトル化や行列化の場合よりも優れていることが示されている。
- 参考スコア(独自算出の注目度): 14.016197224603433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to build a novel bandits algorithm that is capable of
fully harnessing the power of multi-dimensional data and the inherent
non-linearity of reward functions to provide high-usable and accountable
decision-making services. To this end, we introduce a generalized low-rank
tensor contextual bandits model in which an action is formed from three feature
vectors, and thus can be represented by a tensor. In this formulation, the
reward is determined through a generalized linear function applied to the inner
product of the action's feature tensor and a fixed but unknown parameter tensor
with a low tubal rank. To effectively achieve the trade-off between exploration
and exploitation, we introduce a novel algorithm called "Generalized Low-Rank
Tensor Exploration Subspace then Refine" (G-LowTESTR). This algorithm first
collects raw data to explore the intrinsic low-rank tensor subspace information
embedded in the decision-making scenario, and then converts the original
problem into an almost lower-dimensional generalized linear contextual bandits
problem. Rigorous theoretical analysis shows that the regret bound of
G-LowTESTR is superior to those in vectorization and matricization cases. We
conduct a series of simulations and real data experiments to further highlight
the effectiveness of G-LowTESTR, leveraging its ability to capitalize on the
low-rank tensor structure for enhanced learning.
- Abstract(参考訳): 本稿では,多次元データのパワーと報奨関数の固有非線形性を十分に活用し,高可用性かつ説明可能な意思決定サービスを実現するbanditsアルゴリズムを構築することを目的とする。
この目的のために、3つの特徴ベクトルから作用が生成され、従ってテンソルで表現できる一般化された低ランクテンソル文脈帯域モデルを導入する。
この定式化において、報酬は、アクションの特徴テンソルの内積に適用される一般化線形関数と、低い管状ランクを持つ固定だが未知のパラメータテンソルによって決定される。
探索と搾取のトレードオフを効果的に達成するために,「一般化された低ランクテンソル探索部分空間を精製する」(g-lowtestr)という新しいアルゴリズムを導入する。
このアルゴリズムは、まず生データを収集し、決定シナリオに埋め込まれた本質的な低ランクテンソル部分空間情報を探索し、元の問題をほぼ低次元の一般化線形文脈帯域問題に変換する。
厳密な理論解析により、G-LowTESTRの後悔境界はベクトル化や行列化の場合よりも優れていることが示された。
我々は,g-lowtestrの有効性をさらに強調するために,一連のシミュレーションと実データ実験を実施し,低ランクテンソル構造を活用して強化学習を行う。
関連論文リスト
- ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Low-Rank Tensor Completion via Novel Sparsity-Inducing Regularizers [30.920908325825668]
低ランクテンソル完備化問題において、l1-ノルムを緩和するため、非ランクサロゲート/正則化器が提案されている。
これらの正則化器は核ランク復元に適用され,乗算器法に基づく効率的なアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2023-10-10T01:00:13Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - On High-dimensional and Low-rank Tensor Bandits [53.0829344775769]
この研究は一般的なテンソルバンドイットモデルについて研究し、アクションとシステムパラメータはベクトルとは対照的にテンソルで表される。
TOFU(Tensor Optimism in the Face of Uncertainity)と呼ばれる新しいバンディットアルゴリズムを開発した。
理論的解析により、TOFUは系の順序で指数関数的に増加する乗法的因子により、最もよく知られた後悔の上界を改善することが示されている。
論文 参考訳(メタデータ) (2023-05-06T00:43:36Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
本稿では、テンソルロバスト主成分分析(RPCA)に取り組む。
希少な腐敗によって汚染された観測から低ランクのテンソルを回収することを目的としている。
提案アルゴリズムは, 最先端行列やテンソルRPCAアルゴリズムよりも, より優れた, よりスケーラブルな性能を実現する。
論文 参考訳(メタデータ) (2022-06-18T04:01:32Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
基本的な課題は、高度に不完全な測定からテンソルを忠実に回収することである。
タッカー分解におけるテンソル因子を直接回復するアルゴリズムを開発した。
2つの正準問題に対する基底真理テンソルの線形独立率で確実に収束することを示す。
論文 参考訳(メタデータ) (2021-04-29T17:44:49Z) - Towards Flexible Sparsity-Aware Modeling: Automatic Tensor Rank Learning
Using The Generalized Hyperbolic Prior [24.848237413017937]
正準多進分解(CPD)のためのランク学習は、長い間必須だが難しい問題とみなされてきた。
テンソルランクの最適決定は、非決定論的時間ハード(NP-hard)タスクであることが知られている。
本稿では,確率論的モデリングモデルに先立って,より高度な一般化双曲型(GH)を導入する。
論文 参考訳(メタデータ) (2020-09-05T06:07:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。