論文の概要: Depth-guided Free-space Segmentation for a Mobile Robot
- arxiv url: http://arxiv.org/abs/2311.01966v1
- Date: Fri, 3 Nov 2023 15:02:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 13:44:57.402306
- Title: Depth-guided Free-space Segmentation for a Mobile Robot
- Title(参考訳): 移動ロボットの奥行き誘導自由空間分割
- Authors: Christos Sevastopoulos, Joey Hussain, Stasinos Konstantopoulos,
Vangelis Karkaletsis, Fillia Makedon
- Abstract要約: 屋内自由空間セグメンテーションは、屋内環境がもたらす複雑さと動的性質のために難しい課題である。
本研究では,大深度値と航法可能な領域を関連付ける,屋内自由空間分割法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate indoor free-space segmentation is a challenging task due to the
complexity and the dynamic nature that indoor environments exhibit. We propose
an indoors free-space segmentation method that associates large depth values
with navigable regions. Our method leverages an unsupervised masking technique
that, using positive instances, generates segmentation labels based on textural
homogeneity and depth uniformity. Moreover, we generate superpixels
corresponding to areas of higher depth and align them with features extracted
from a Dense Prediction Transformer (DPT). Using the estimated free-space masks
and the DPT feature representation, a SegFormer model is fine-tuned on our
custom-collected indoor dataset. Our experiments demonstrate sufficient
performance in intricate scenarios characterized by cluttered obstacles and
challenging identification of free space.
- Abstract(参考訳): 正確な屋内自由空間セグメンテーションは、屋内環境が示す複雑さと動的性質のために難しい課題である。
本研究では,大深度値と航行可能な領域を関連付ける自由空間分割法を提案する。
本手法は,正のインスタンスを用いてテクスチャの均質性と深さの均一性に基づいてセグメンテーションラベルを生成する教師なしマスキング手法を利用する。
さらに,より深度の高い領域に対応するスーパーピクセルを生成し,Dense Prediction Transformer (DPT) から抽出した特徴と整列する。
推定自由空間マスクとDPT特徴表現を用いて、SegFormerモデルは、カスタマイズされた屋内データセットに基づいて微調整される。
本実験は, 乱雑な障害物や自由空間の同定に苦慮した複雑なシナリオにおいて, 十分な性能を示すものである。
関連論文リスト
- D$^3$epth: Self-Supervised Depth Estimation with Dynamic Mask in Dynamic Scenes [23.731667977542454]
D$3$epthは動的シーンにおける自己教師付き深度推定の新しい手法である。
これは2つの重要な視点から、動的オブジェクトの課題に取り組む。
既存の自己教師付き単分子深度推定ベースラインよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-11-07T16:07:00Z) - SAID-NeRF: Segmentation-AIDed NeRF for Depth Completion of Transparent Objects [7.529049797077149]
市販のRGB-Dカメラを使って透明物体の正確な深度情報を取得することは、コンピュータビジョンとロボティクスにおいてよく知られた課題である。
NeRFは学習のないアプローチであり、新しいビューの合成と形状回復に広く成功している。
提案したAID-NeRF法は,透明物体とロボットグルーピングのための深度補完データセットに有意な性能を示す。
論文 参考訳(メタデータ) (2024-03-28T17:28:32Z) - RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant
Features [6.358423536732677]
本稿では,ロボットインタラクションとデザインされたボディーフレーム不変機能を用いて,不正確なセグメンテーションを補正する新しい手法を提案する。
オブジェクト分割精度を平均80.7%とすることで、散らばったシーンを正確にセグメント化するための対話型知覚パイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-04T05:03:24Z) - NeRF-SOS: Any-View Self-supervised Object Segmentation from Complex
Real-World Scenes [80.59831861186227]
本論文では,複雑な現実世界のシーンに対して,NeRFを用いたオブジェクトセグメンテーションのための自己教師型学習の探索を行う。
我々のフレームワークは、NeRF(NeRF with Self-supervised Object NeRF-SOS)と呼ばれ、NeRFモデルがコンパクトな幾何認識セグメンテーションクラスタを蒸留することを奨励している。
他の2Dベースの自己教師付きベースラインを一貫して上回り、既存の教師付きマスクよりも細かなセマンティクスマスクを予測する。
論文 参考訳(メタデータ) (2022-09-19T06:03:17Z) - Polyline Based Generative Navigable Space Segmentation for Autonomous
Visual Navigation [57.3062528453841]
ロボットが教師なしの方法で移動可能な空間分割を学習できるようにするための表現学習ベースのフレームワークを提案する。
提案するPSV-Netは,単一のラベルを使わずとも,高精度で視覚ナビゲーション可能な空間を学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-29T19:50:48Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - SelfDeco: Self-Supervised Monocular Depth Completion in Challenging
Indoor Environments [50.761917113239996]
自己教師付き単分子深度補完のための新しいアルゴリズムを提案する。
提案手法は,深度ラベルを含まない疎深度測定とそれに対応する単眼ビデオシーケンスのみを必要とするニューラルネットワークのトレーニングに基づく。
我々の自己監督アルゴリズムは、テクスチャのない領域、光沢のない透明な表面、非ランバートの表面、動く人々、より長く多様な深度範囲、複雑なエゴモーションによって捉えられたシーンを含む屋内環境に挑戦するために設計されている。
論文 参考訳(メタデータ) (2020-11-10T08:55:07Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z) - A Multi-Level Approach to Waste Object Segmentation [10.20384144853726]
カラー画像とオプションの深度画像から廃棄物を局所化する問題に対処する。
本手法は,複数の空間的粒度レベルでの強度と深度情報を統合する。
我々は, この領域における今後の研究を促進するために, 新たなRGBD廃棄物分節MJU-Wasteを作成している。
論文 参考訳(メタデータ) (2020-07-08T16:49:25Z) - Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning [5.699350798684963]
ディープラーニングを用いた3次元インスタンスセグメンテーションのための,単純かつ効率的なアルゴリズムを提案する。
大規模シーンからの高レベルのインテリジェントなタスクに対して、3Dインスタンスセグメンテーションはオブジェクトの個々のインスタンスを認識する。
我々は,ScanNet 3D インスタンス分割ベンチマークにおいて,我々のアルゴリズムの最先端性能をAPスコアで示す。
論文 参考訳(メタデータ) (2020-07-07T02:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。