論文の概要: Semantic Modelling of Organizational Knowledge as a Basis for Enterprise
Data Governance 4.0 -- Application to a Unified Clinical Data Model
- arxiv url: http://arxiv.org/abs/2311.02082v3
- Date: Thu, 23 Nov 2023 21:30:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 02:37:27.437938
- Title: Semantic Modelling of Organizational Knowledge as a Basis for Enterprise
Data Governance 4.0 -- Application to a Unified Clinical Data Model
- Title(参考訳): 企業データガバナンスの基盤としての組織知識のセマンティックモデリング 4.0 --統一臨床データモデルへの応用
- Authors: Miguel AP Oliveira, Stephane Manara, Bruno Mol\'e, Thomas Muller,
Aur\'elien Guillouche, Lysann Hesske, Bruce Jordan, Gilles Hubert, Chinmay
Kulkarni, Pralipta Jagdev and Cedric R. Berger
- Abstract要約: メタデータ駆動、アジャイル、および(半自動化された)データガバナンスを可能にする、シンプルでコスト効率のよいフレームワークを確立します。
本稿では,25年間の臨床研究データを企業規模で完全に生産的な環境で統合するために,このフレームワークの実装と利用について説明する。
- 参考スコア(独自算出の注目度): 6.302916372143144
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Individuals and organizations cope with an always-growing amount of data,
which is heterogeneous in its contents and formats. An adequate data management
process yielding data quality and control over its lifecycle is a prerequisite
to getting value out of this data and minimizing inherent risks related to
multiple usages. Common data governance frameworks rely on people, policies,
and processes that fall short of the overwhelming complexity of data. Yet,
harnessing this complexity is necessary to achieve high-quality standards. The
latter will condition any downstream data usage outcome, including generative
artificial intelligence trained on this data. In this paper, we report our
concrete experience establishing a simple, cost-efficient framework that
enables metadata-driven, agile and (semi-)automated data governance (i.e. Data
Governance 4.0). We explain how we implement and use this framework to
integrate 25 years of clinical study data at an enterprise scale in a fully
productive environment. The framework encompasses both methodologies and
technologies leveraging semantic web principles. We built a knowledge graph
describing avatars of data assets in their business context, including
governance principles. Multiple ontologies articulated by an enterprise upper
ontology enable key governance actions such as FAIRification, lifecycle
management, definition of roles and responsibilities, lineage across
transformations and provenance from source systems. This metadata model is the
keystone to data governance 4.0: a semi-automatised data management process
that considers the business context in an agile manner to adapt governance
constraints to each use case and dynamically tune it based on business changes.
- Abstract(参考訳): 個人や組織は常に増加するデータ量に対応し、その内容や形式は異質である。
データの品質とライフサイクルの制御をもたらす適切なデータ管理プロセスは、このデータから価値を取り出し、複数の利用に関する固有のリスクを最小化するための前提条件である。
一般的なデータガバナンスフレームワークは、データの圧倒的な複雑さに欠ける人々、ポリシー、プロセスに依存しています。
しかし、高品質な標準を達成するためには、この複雑さを活用する必要がある。
後者は、このデータに基づいてトレーニングされた生成人工知能を含む、ダウンストリームのデータ使用結果を条件とする。
本稿では,メタデータ駆動,アジャイル,(準)自動データガバナンス(すなわちデータガバナンス 4.0)を実現する,シンプルでコスト効率のよいフレームワークを構築した具体的経験を報告する。
本稿では,25年間の臨床研究データを企業規模で完全に生産的な環境で統合する方法について説明する。
このフレームワークはセマンティックウェブの原則を利用する方法論と技術の両方を含んでいる。
ガバナンスの原則を含む、ビジネスコンテキストにおけるデータ資産のアバターを記述する知識グラフを構築しました。
エンタープライズ上のオントロジーによって記述された複数のオントロジーは、FAIRification、ライフサイクル管理、役割と責任の定義、トランスフォーメーション間の血統、ソースコードからの証明といった重要なガバナンスのアクションを可能にします。
このメタデータモデルは、ビジネスコンテキストをアジャイルな方法で考慮し、各ユースケースにガバナンスの制約を適用し、ビジネスの変化に基づいて動的に調整する、半自動的なデータ管理プロセスであるdata governance 4.0の鍵となるものです。
関連論文リスト
- A Systematic Review of NeurIPS Dataset Management Practices [7.974245534539289]
我々はNeurIPSトラックで公開されたデータセットの体系的なレビューを行い、証明、配布、倫理的開示、ライセンスの4つの重要な側面に焦点を当てる。
この結果から, データセットの出現は不明瞭なフィルタリングやキュレーションのプロセスのため, しばしば不明瞭であることが明らかとなった。
これらの矛盾は、データセットの公開と管理のための標準化されたデータインフラストラクチャーの緊急の必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-10-31T23:55:41Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly-lexically) で合成され,VLM(Vision Language Models) をフリーズしたパッチワイド特徴抽出器として利用するフレームワークである。
本研究では,本手法が4段階のフライ・トゥ・ターゲットタスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments [1.2753215270475886]
本稿では,高ボリューム環境におけるデータ品質維持の課題に対処するために,AIによるデータ品質監視システムに関する理論的枠組みを提案する。
本稿では,ビッグデータのスケール,速度,多様性の管理における従来の手法の限界について検討し,高度な機械学習技術を活用した概念的アプローチを提案する。
主なコンポーネントは、インテリジェントデータ取り込み層、適応前処理機構、コンテキスト認識機能抽出、AIベースの品質評価モジュールなどである。
論文 参考訳(メタデータ) (2024-10-11T07:06:36Z) - Blockchain-Enabled Accountability in Data Supply Chain: A Data Bill of Materials Approach [16.31469678670097]
データ請求書(Data Bill of Materials, DataBOM)は、特定のメタデータを格納することで、異なるデータセットと利害関係者間の依存関係関係をキャプチャする。
ブロックチェーンベースのDataBOMサービスを提供するためのプラットフォームアーキテクチャを実証し、利害関係者のためのインタラクションプロトコルを提示し、DataBOMメタデータの最小要件について議論する。
論文 参考訳(メタデータ) (2024-08-16T05:34:50Z) - Efficient Data Collection for Robotic Manipulation via Compositional Generalization [70.76782930312746]
本研究では, 環境要因をデータから構成し, 未確認の要因の組み合わせに遭遇した場合に成功できることを示す。
コンポジションを利用したドメイン内データ収集手法を提案する。
ビデオはhttp://iliad.stanford.edu/robot-data-comp/で公開しています。
論文 参考訳(メタデータ) (2024-03-08T07:15:38Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
研究者や実践者は、しばしば異なるソースからデータセットを手動でキュレートする必要がある。
本稿では,処理モジュールと解析モジュールを統合したデータ処理フレームワークを提案する。
提案されたフレームワークは使いやすく、柔軟です。
論文 参考訳(メタデータ) (2024-02-26T07:22:51Z) - Transforming Agriculture with Intelligent Data Management and Insights [3.027257459810039]
現代の農業は、気候変動と天然資源の枯渇の制約の下で、食料、燃料、飼料、繊維の需要の増加に対応するための大きな課題に直面している。
データ革新は、アグロエコシステムの生産性、持続可能性、レジリエンスの確保と改善に緊急に必要です。
論文 参考訳(メタデータ) (2023-11-07T22:02:54Z) - Robot Fleet Learning via Policy Merging [58.5086287737653]
我々はFLEET-MERGEを提案し、艦隊設定における政策を効率的にマージする。
本稿では,FLEET-MERGEがメタワールド環境における50のタスクで訓練されたポリシーの行動を統合することを示す。
合成・接触に富んだロボット操作タスクにおけるフリートポリシー学習のための新しいロボットツール用ベンチマークであるFLEET-TOOLSを導入する。
論文 参考訳(メタデータ) (2023-10-02T17:23:51Z) - 1st ICLR International Workshop on Privacy, Accountability,
Interpretability, Robustness, Reasoning on Structured Data (PAIR^2Struct) [28.549151517783287]
データプライバシ、説明可能性、解釈可能性、ロバスト性、推論は、決定クリティカルおよび/またはプライバシに敏感なアプリケーションに機械学習(ML)技術を使用する基本的な原則として認識されている。
本質的に構造化された知識を利用することで、より関連性の高い変数を特定し、使用して信頼性の高い決定を行うための、妥当なアプローチを設計することができる。
論文 参考訳(メタデータ) (2022-10-07T15:12:03Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
本稿では,物理モデルとデータ駆動型計算モデルのランドスケープを整理する取り組みについて述べる。
オブジェクト指向設計の概念を適用し、オープンソース協調フレームワークの基礎を概説する。
論文 参考訳(メタデータ) (2021-09-28T02:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。