論文の概要: CateCom: a practical data-centric approach to categorization of
computational models
- arxiv url: http://arxiv.org/abs/2109.13452v1
- Date: Tue, 28 Sep 2021 02:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:32:12.516004
- Title: CateCom: a practical data-centric approach to categorization of
computational models
- Title(参考訳): CateCom: 計算モデルの分類のための実践的データ中心アプローチ
- Authors: Alexander Zech and Timur Bazhirov
- Abstract要約: 本稿では,物理モデルとデータ駆動型計算モデルのランドスケープを整理する取り組みについて述べる。
オブジェクト指向設計の概念を適用し、オープンソース協調フレームワークの基礎を概説する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of data-driven science in the 21st century brought about the need
for well-organized structured data and associated infrastructure able to
facilitate the applications of Artificial Intelligence and Machine Learning. We
present an effort aimed at organizing the diverse landscape of physics-based
and data-driven computational models in order to facilitate the storage of
associated information as structured data. We apply object-oriented design
concepts and outline the foundations of an open-source collaborative framework
that is: (1) capable of uniquely describing the approaches in structured data,
(2) flexible enough to cover the majority of widely used models, and (3)
utilizes collective intelligence through community contributions. We present
example database schemas and corresponding data structures and explain how
these are deployed in software at the time of this writing.
- Abstract(参考訳): 21世紀のデータ駆動科学の出現は、人工知能と機械学習の応用を促進するための、構造化された構造化データと関連するインフラストラクチャの必要性をもたらした。
本稿では, 物理モデルとデータ駆動型計算モデルの多様な景観を整理し, 関連情報を構造化データとして保存しやすくする取り組みについて述べる。
オブジェクト指向設計の概念を適用し,(1)構造化データにおけるアプローチを一意に記述できる,(2)広く使用されているモデルの大多数をカバーするのに十分な柔軟性を持つ,(3)コミュニティコントリビューションを通じて集団知性を利用する,というオープンソースの協調フレームワークの基礎を概説する。
データベーススキーマと対応するデータ構造を例示し、この記述時にどのようにソフトウェアにデプロイされるかを説明します。
関連論文リスト
- Structure Learning via Mutual Information [0.8702432681310399]
本稿では、相互情報(MI)機能を用いて、データ内の機能的関係を学習し、表現するためのフレームワークを提案する。
本手法は,より効率的で一般化可能な学習アルゴリズムを実現することを目的としている。
論文 参考訳(メタデータ) (2024-09-21T19:33:56Z) - Redefining Data-Centric Design: A New Approach with a Domain Model and Core Data Ontology for Computational Systems [2.872069347343959]
本稿では,新しい情報ドメインモデルを導入することにより,計算システムを設計するための革新的なデータ中心パラダイムを提案する。
提案モデルは従来のノード中心のフレームワークから離れ、オブジェクト、イベント、コンセプト、アクションを組み込んだマルチモーダルアプローチを使用して、データ中心の分類に焦点を当てている。
論文 参考訳(メタデータ) (2024-09-01T22:34:12Z) - Tree-based variational inference for Poisson log-normal models [47.82745603191512]
階層木は、しばしば近接基準に基づいてエンティティを組織するために使用される。
現在のカウントデータモデルは、この構造化情報を利用していない。
本稿では,PLNモデルの拡張としてPLN-Treeモデルを導入し,階層的カウントデータをモデル化する。
論文 参考訳(メタデータ) (2024-06-25T08:24:35Z) - A Blueprint Architecture of Compound AI Systems for Enterprise [18.109450556443782]
我々は、企業環境で運用する複合AIシステムのための青写真アーキテクチャを、費用対効果と実用性で導入する。
提案したアーキテクチャは,既存の計算とデータインフラストラクチャとのシームレスな統合を目標としています。
論文 参考訳(メタデータ) (2024-06-02T01:16:32Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
本研究の目的は,階層的および漸進的クラスタリング技術の解析である。
本研究の主な貢献は、文書クラスタリングのテキスト化を目的とした、2010年から2018年にかけて出版された研究で使用されるテクニックの組織化と比較である。
論文 参考訳(メタデータ) (2023-12-12T22:27:29Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Data Mesh: a Systematic Gray Literature Review [3.038477115588261]
Data Meshは、運用上のボトルネックを最小限に抑え、回避することを目的とした、新たなドメイン駆動の分散データアーキテクチャである。
我々は114の産業用グレー文学論文を体系的に収集,分析,合成した。
このレビューは、データメッシュの4つの重要な原則に関する実践者の視点に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-04-03T15:16:46Z) - Policy Architectures for Compositional Generalization in Control [71.61675703776628]
本稿では,タスクにおけるエンティティベースの構成構造をモデル化するためのフレームワークを提案する。
私たちのポリシーは柔軟で、アクションプリミティブを必要とせずにエンドツーエンドでトレーニングできます。
論文 参考訳(メタデータ) (2022-03-10T06:44:24Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Siamese Graph Neural Networks for Data Integration [11.41207739004894]
本稿では,リレーショナルデータベースなどの構造化データからエンティティをモデリングし,統合するための一般的なアプローチと,ニュース記事からの自由テキストなどの構造化されていない情報源を提案する。
我々のアプローチは、エンティティ間の関係を明示的にモデル化し、活用することにより、利用可能なすべての情報を使用し、できるだけ多くのコンテキストを保存するように設計されています。
我々は,ビジネスエンティティに関するデータ統合作業における手法の評価を行い,グラフベース表現を使用しない他のディープラーニングアプローチと同様に,標準的なルールベースシステムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-17T21:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。