Joint Composite Latent Space Bayesian Optimization
- URL: http://arxiv.org/abs/2311.02213v2
- Date: Tue, 9 Jul 2024 19:02:16 GMT
- Title: Joint Composite Latent Space Bayesian Optimization
- Authors: Natalie Maus, Zhiyuan Jerry Lin, Maximilian Balandat, Eytan Bakshy,
- Abstract summary: We introduce Joint Composite Latent Space Bayesian Optimization (JoCo)
JoCo is a novel framework that jointly trains neural network encoders and probabilistic models to adaptively compress high-dimensional input and output spaces into manageable latent representations.
This enables viable BO on these compressed representations, allowing JoCo to outperform other state-of-the-art methods in high-dimensional BO on a wide variety of simulated and real-world problems.
- Score: 15.262166538890243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Optimization (BO) is a technique for sample-efficient black-box optimization that employs probabilistic models to identify promising input locations for evaluation. When dealing with composite-structured functions, such as f=g o h, evaluating a specific location x yields observations of both the final outcome f(x) = g(h(x)) as well as the intermediate output(s) h(x). Previous research has shown that integrating information from these intermediate outputs can enhance BO performance substantially. However, existing methods struggle if the outputs h(x) are high-dimensional. Many relevant problems fall into this setting, including in the context of generative AI, molecular design, or robotics. To effectively tackle these challenges, we introduce Joint Composite Latent Space Bayesian Optimization (JoCo), a novel framework that jointly trains neural network encoders and probabilistic models to adaptively compress high-dimensional input and output spaces into manageable latent representations. This enables viable BO on these compressed representations, allowing JoCo to outperform other state-of-the-art methods in high-dimensional BO on a wide variety of simulated and real-world problems.
Related papers
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Predictive Modeling through Hyper-Bayesian Optimization [60.586813904500595]
We propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster.
The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured.
In addition to improved sample efficiency, the framework outputs information about the black-box function.
arXiv Detail & Related papers (2023-08-01T04:46:58Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
We propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors.
We show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces.
We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs.
arXiv Detail & Related papers (2023-02-14T18:55:21Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Bayesian Optimization over Permutation Spaces [30.650753803587794]
We propose and evaluate two algorithms for BO over Permutation Spaces (BOPS)
We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly.
Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for spaces.
arXiv Detail & Related papers (2021-12-02T08:20:50Z) - Combining Latent Space and Structured Kernels for Bayesian Optimization
over Combinatorial Spaces [27.989924313988016]
We consider the problem of optimizing spaces (e.g., sequences, trees, and graphs) using expensive black-box function evaluations.
A recent BO approach for spaces is through a reduction to BO over continuous spaces by learning a latent representation of structures.
This paper proposes a principled approach referred as LADDER to overcome this drawback.
arXiv Detail & Related papers (2021-11-01T18:26:22Z) - High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces [14.03847432040056]
We argue that a surrogate model defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony.
We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function.
arXiv Detail & Related papers (2021-02-27T23:06:24Z) - High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models [40.497123136157946]
We consider generalized additive models in which low-dimensional functions with overlapping subsets of variables are composed to model a high-dimensional target function.
Our goal is to lower the computational resources required and facilitate faster model learning.
We demonstrate and discuss the efficacy of our approach via a range of experiments on synthetic functions and real-world datasets.
arXiv Detail & Related papers (2020-12-24T03:56:44Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
We show that black-box optimization encodings can be automatically learned, rather than hand designed.
We show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites.
arXiv Detail & Related papers (2020-03-09T20:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.