Multi-task Learning for Optical Coherence Tomography Angiography (OCTA)
Vessel Segmentation
- URL: http://arxiv.org/abs/2311.02266v1
- Date: Fri, 3 Nov 2023 23:10:56 GMT
- Title: Multi-task Learning for Optical Coherence Tomography Angiography (OCTA)
Vessel Segmentation
- Authors: Can Koz, Onat Dalmaz, Mertay Dayanc
- Abstract summary: We propose a novel multi-task learning method for OCTA segmentation, called OCTA-MTL.
The adaptive loss combination strategy dynamically adjusts the loss weights according to the inverse of the average loss values of each task.
We evaluate our method on the ROSE-2 dataset its superiority in terms of segmentation performance against two baseline methods.
- Score: 1.7539061565898157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging
technique that provides high-resolution cross-sectional images of the retina,
which are useful for diagnosing and monitoring various retinal diseases.
However, manual segmentation of OCTA images is a time-consuming and
labor-intensive task, which motivates the development of automated segmentation
methods. In this paper, we propose a novel multi-task learning method for OCTA
segmentation, called OCTA-MTL, that leverages an image-to-DT (Distance
Transform) branch and an adaptive loss combination strategy. The image-to-DT
branch predicts the distance from each vessel voxel to the vessel surface,
which can provide useful shape prior and boundary information for the
segmentation task. The adaptive loss combination strategy dynamically adjusts
the loss weights according to the inverse of the average loss values of each
task, to balance the learning process and avoid the dominance of one task over
the other. We evaluate our method on the ROSE-2 dataset its superiority in
terms of segmentation performance against two baseline methods: a single-task
segmentation method and a multi-task segmentation method with a fixed loss
combination.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised
Medical Image Segmentation [3.6748639131154315]
We extend the concept of metric learning to the segmentation task.
We propose a simple convolutional projection head for obtaining dense pixel-level features.
A bidirectional regularization mechanism involving two-stream regularization training is devised for the downstream task.
arXiv Detail & Related papers (2022-10-26T23:11:02Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
arXiv Detail & Related papers (2021-04-17T19:03:52Z) - Detecting micro fractures with X-ray computed tomography [4.855026133182103]
We present a data-set produced by the successful visualization of a fracture network in Carrara marble with XRCT.
Three conventional and two machine-learning-based methods are evaluated.
The output of the 2D U-net model is one of the adopted machine-learning-based segmentation methods.
arXiv Detail & Related papers (2021-03-23T20:20:24Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.