Thermal Face Image Classification using Deep Learning Techniques
- URL: http://arxiv.org/abs/2311.02314v1
- Date: Sat, 4 Nov 2023 03:56:40 GMT
- Title: Thermal Face Image Classification using Deep Learning Techniques
- Authors: Prosenjit Chatterjee and ANK Zaman
- Abstract summary: This work uses a convolutional neural network (CNN) architecture, specifically ResNet-50 and VGGNet-19, to extract features from thermal images.
The experimental results demonstrate the effectiveness of the proposed approach in terms of accuracy and efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Thermal images have various applications in security, medical and industrial
domains. This paper proposes a practical deep-learning approach for thermal
image classification. Accurate and efficient classification of thermal images
poses a significant challenge across various fields due to the complex image
content and the scarcity of annotated datasets. This work uses a convolutional
neural network (CNN) architecture, specifically ResNet-50 and VGGNet-19, to
extract features from thermal images. This work also applied Kalman filter on
thermal input images for image denoising. The experimental results demonstrate
the effectiveness of the proposed approach in terms of accuracy and efficiency.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - vHeat: Building Vision Models upon Heat Conduction [63.00030330898876]
vHeat is a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field.
The essential idea is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy.
arXiv Detail & Related papers (2024-05-26T12:58:04Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Segmentation Framework for Heat Loss Identification in Thermal Images:
Empowering Scottish Retrofitting and Thermographic Survey Companies [3.663784777941382]
This study proposes a deep learning (DL)-based segmentation framework using the Mask Region Proposal Convolutional Neural Network (Mask RCNN)
The objective of the framework is to identify, and crop heat loss sources caused by weak insulation, while also eliminating obstructive objects present in those images.
arXiv Detail & Related papers (2023-08-07T14:36:49Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Maximizing Self-supervision from Thermal Image for Effective
Self-supervised Learning of Depth and Ego-motion [78.19156040783061]
Self-supervised learning of depth and ego-motion from thermal images shows strong robustness and reliability under challenging scenarios.
The inherent thermal image properties such as weak contrast, blurry edges, and noise hinder to generate effective self-supervision from thermal images.
We propose an effective thermal image mapping method that significantly increases image information, such as overall structure, contrast, and details, while preserving temporal consistency.
arXiv Detail & Related papers (2022-01-12T09:49:24Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
arXiv Detail & Related papers (2021-11-03T09:08:54Z) - Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for
Photothermal Super Resolution Imaging [9.160910754837756]
Photothermal-SR-Net is proposed in this paper, which performs deconvolution by deep unfolding considering the underlying physics.
Photothermal-SR-Net applies trained block-sparsity thresholding to the acquired thermal images in each convolutional layer.
arXiv Detail & Related papers (2021-04-21T14:41:04Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z) - Unsupervised Image-generation Enhanced Adaptation for Object Detection
in Thermal images [4.810743887667828]
This paper proposes an unsupervised image-generation enhanced adaptation method for object detection in thermal images.
To reduce the gap between visible domain and thermal domain, the proposed method manages to generate simulated fake thermal images.
Experiments demonstrate the effectiveness and superiority of the proposed method.
arXiv Detail & Related papers (2020-02-17T04:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.