論文の概要: Perturbation-based Active Learning for Question Answering
- arxiv url: http://arxiv.org/abs/2311.02345v1
- Date: Sat, 4 Nov 2023 08:07:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 18:09:54.831123
- Title: Perturbation-based Active Learning for Question Answering
- Title(参考訳): 質問応答のための摂動型アクティブラーニング
- Authors: Fan Luo, Mihai Surdeanu
- Abstract要約: アクティブラーニング(AL)トレーニング戦略を活用することで、アノテーションコストの少ない質問応答(QA)モデルを構築することができる。
モデルを効果的に更新するために、最も情報に富んだ未ラベルのトレーニングデータを選択する。
- 参考スコア(独自算出の注目度): 25.379528163789082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building a question answering (QA) model with less annotation costs can be
achieved by utilizing active learning (AL) training strategy. It selects the
most informative unlabeled training data to update the model effectively.
Acquisition functions for AL are used to determine how informative each
training example is, such as uncertainty or diversity based sampling. In this
work, we propose a perturbation-based active learning acquisition strategy and
demonstrate it is more effective than existing commonly used strategies.
- Abstract(参考訳): アクティブラーニング(AL)トレーニング戦略を活用することで、アノテーションコストの少ない質問応答(QA)モデルを構築することができる。
最も情報のないトレーニングデータを選択して、モデルを効果的に更新する。
ALの取得関数は、不確実性や多様性に基づくサンプリングなど、各トレーニング例がどの程度情報的であるかを決定するために使用される。
本研究では,摂動型アクティブラーニングによる学習戦略を提案し,既存の一般的な学習戦略よりも効果的であることを実証する。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
本稿では,事前訓練された大規模言語モデルのタスク適応フェーズに対する効率的なアンラーニング手法に着目した。
タスク適応のための文脈内学習を行うLLMの能力は、タスク適応トレーニングデータの効率的なアンラーニングを可能にする。
本稿では,様々な推論コストを考慮に入れた非学習コストの包括的尺度を提案する。
論文 参考訳(メタデータ) (2024-02-01T16:43:04Z) - Compute-Efficient Active Learning [0.0]
アクティブラーニングは、ラベルなしデータセットから最も有益なサンプルを選択することでラベリングコストを削減することを目的としている。
従来のアクティブな学習プロセスは、拡張性と効率を阻害する広範な計算資源を必要とすることが多い。
本稿では,大規模データセット上での能動的学習に伴う計算負担を軽減するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T12:32:07Z) - Learning to Rank for Active Learning via Multi-Task Bilevel Optimization [29.207101107965563]
データ取得のための学習代理モデルを用いて、ラベルのないインスタンスのバッチを選択することを目的とした、アクティブな学習のための新しいアプローチを提案する。
このアプローチにおける重要な課題は、ユーティリティ関数の入力の一部を構成するデータの歴史が時間とともに増大するにつれて、よく一般化する取得関数を開発することである。
論文 参考訳(メタデータ) (2023-10-25T22:50:09Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
本稿では,ラベル効率向上のための新しい能動的学習手法を提案する。
提案手法は反復的であり,多様性,表現性,不確実性の基準を混合した制約対象関数の最小化を目的としている。
また、強化学習に基づく新たな重み付け機構を導入し、各トレーニングイテレーションでこれらの基準を適応的にバランスさせる。
論文 参考訳(メタデータ) (2022-12-09T14:17:45Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Reinforced Meta Active Learning [11.913086438671357]
本稿では,データから直接情報提供度を学習する,オンラインストリームに基づくメタアクティブ学習手法を提案する。
本手法は、強化学習に基づいて、エピソードポリシー検索と文脈的バンディットアプローチを組み合わせたものである。
本研究では,本手法が既存の最先端手法よりも効率的にトレーニングサンプルを選択できることを実データで示す。
論文 参考訳(メタデータ) (2022-03-09T08:36:54Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
視覚的質問応答のタスクにおいて、5つのモデルと4つのデータセットにまたがって、多種多様な能動的学習アプローチがランダム選択を上回りません。
アクティブな学習手法が好まれるが、モデルは学習に失敗する例の集まりである。
本研究では,アクティブ学習プールにおける集団外乱の減少に伴い,アクティブ学習サンプル効率が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-07-06T00:52:11Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。