MTS-DVGAN: Anomaly Detection in Cyber-Physical Systems using a Dual
Variational Generative Adversarial Network
- URL: http://arxiv.org/abs/2311.02378v1
- Date: Sat, 4 Nov 2023 11:19:03 GMT
- Title: MTS-DVGAN: Anomaly Detection in Cyber-Physical Systems using a Dual
Variational Generative Adversarial Network
- Authors: Haili Sun, Yan Huang, Lansheng Han, Cai Fu, Hongle Liu, Xiang Long
- Abstract summary: Deep generative models are promising in detecting novel cyber-physical attacks, mitigating the vulnerability of Cyber-physical systems (CPSs) without relying on labeled information.
This article proposes a novel unsupervised dual variational generative adversarial model named MST-DVGAN.
The central concept is to enhance the model's discriminative capability by widening the distinction between reconstructed abnormal samples and their normal counterparts.
- Score: 7.889342625283858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models are promising in detecting novel cyber-physical
attacks, mitigating the vulnerability of Cyber-physical systems (CPSs) without
relying on labeled information. Nonetheless, these generative models face
challenges in identifying attack behaviors that closely resemble normal data,
or deviate from the normal data distribution but are in close proximity to the
manifold of the normal cluster in latent space. To tackle this problem, this
article proposes a novel unsupervised dual variational generative adversarial
model named MST-DVGAN, to perform anomaly detection in multivariate time series
data for CPS security. The central concept is to enhance the model's
discriminative capability by widening the distinction between reconstructed
abnormal samples and their normal counterparts. Specifically, we propose an
augmented module by imposing contrastive constraints on the reconstruction
process to obtain a more compact embedding. Then, by exploiting the
distribution property and modeling the normal patterns of multivariate time
series, a variational autoencoder is introduced to force the generative
adversarial network (GAN) to generate diverse samples. Furthermore, two
augmented loss functions are designed to extract essential characteristics in a
self-supervised manner through mutual guidance between the augmented samples
and original samples. Finally, a specific feature center loss is introduced for
the generator network to enhance its stability. Empirical experiments are
conducted on three public datasets, namely SWAT, WADI and NSL_KDD. Comparing
with the state-of-the-art methods, the evaluation results show that the
proposed MTS-DVGAN is more stable and can achieve consistent performance
improvement.
Related papers
- Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models [3.053842954605396]
We introduce a novel method that enhances variational inference in discrete latent variable models.
We leverage Error Correcting Codes (ECCs) to introduce redundancy in the latent representations.
This redundancy is then exploited by the variational posterior to yield more accurate estimates.
arXiv Detail & Related papers (2024-10-10T11:59:58Z) - Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
Botnets are computer networks controlled by malicious actors that present significant cybersecurity challenges.
This research addresses the sophisticated adversarial manipulations posed by attackers, aiming to undermine machine learning-based botnet detection systems.
We introduce a flow-based detection approach, leveraging machine learning and deep learning algorithms trained on the ISCX and ISOT datasets.
arXiv Detail & Related papers (2024-09-01T08:53:21Z) - Controlling the Fidelity and Diversity of Deep Generative Models via Pseudo Density [70.14884528360199]
We introduce an approach to bias deep generative models, such as GANs and diffusion models, towards generating data with enhanced fidelity or increased diversity.
Our approach involves manipulating the distribution of training and generated data through a novel metric for individual samples, named pseudo density.
arXiv Detail & Related papers (2024-07-11T16:46:04Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANs rely on the rich contextual information of these models to identify the actual training distribution.
We suggest a new unsupervised model based on GANs --a combination of an autoencoder and a GAN.
A new scoring function was introduced to target anomalies where a linear combination of the internal representation of the discriminator and the generator's visual representation, plus the encoded representation of the autoencoder, come together to define the proposed anomaly score.
arXiv Detail & Related papers (2021-12-31T16:35:47Z) - Dual-encoder Bidirectional Generative Adversarial Networks for Anomaly
Detection [0.0]
We develop a dual-encoder in a bidirectional GAN architecture that is trained simultaneously with a generator and a discriminator network.
We show that our proposed method performs well in capturing the distribution of normal samples, thereby improving anomaly detection on GAN-based models.
arXiv Detail & Related papers (2020-12-22T05:05:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.