GenIAS: Generator for Instantiating Anomalies in time Series
- URL: http://arxiv.org/abs/2502.08262v1
- Date: Wed, 12 Feb 2025 10:10:04 GMT
- Title: GenIAS: Generator for Instantiating Anomalies in time Series
- Authors: Zahra Zamanzadeh Darban, Qizhou Wang, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi,
- Abstract summary: We develop a generative model for time series anomaly detection (TSAD) using a variational autoencoder.
GenIAS is designed to produce diverse and realistic synthetic anomalies for TSAD tasks.
Our experiments demonstrate that GenIAS consistently outperforms seventeen traditional and deep anomaly detection models.
- Score: 54.959865643340535
- License:
- Abstract: A recent and promising approach for building time series anomaly detection (TSAD) models is to inject synthetic samples of anomalies within real data sets. The existing injection mechanisms have significant limitations - most of them rely on ad hoc, hand-crafted strategies which fail to capture the natural diversity of anomalous patterns, or are restricted to univariate time series settings. To address these challenges, we design a generative model for TSAD using a variational autoencoder, which is referred to as a Generator for Instantiating Anomalies in Time Series (GenIAS). GenIAS is designed to produce diverse and realistic synthetic anomalies for TSAD tasks. By employing a novel learned perturbation mechanism in the latent space and injecting the perturbed patterns in different segments of time series, GenIAS can generate anomalies with greater diversity and varying scales. Further, guided by a new triplet loss function, which uses a min-max margin and a new variance-scaling approach to further enforce the learning of compact normal patterns, GenIAS ensures that anomalies are distinct from normal samples while remaining realistic. The approach is effective for both univariate and multivariate time series. We demonstrate the diversity and realism of the generated anomalies. Our extensive experiments demonstrate that GenIAS - when integrated into a TSAD task - consistently outperforms seventeen traditional and deep anomaly detection models, thereby highlighting the potential of generative models for time series anomaly generation.
Related papers
- AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
We propose a multi-normal-pattern accommodated anomaly detection method in the frequency domain for time series anomaly detection.
There are three novel characteristics of it: (i) a pattern extraction mechanism excelling at handling diverse normal patterns with a unified model; (ii) a dualistic convolution mechanism that amplifies short-term anomalies in the time domain and hinders the reconstruction of anomalies in the frequency domain; and (iii) leveraging the sparsity and parallelism of frequency domain to enhance model efficiency.
arXiv Detail & Related papers (2023-11-26T03:31:43Z) - ALGAN: Time Series Anomaly Detection with Adjusted-LSTM GAN [0.9065034043031667]
Anomaly detection in time series data is a common problem in various domains such as manufacturing, medical imaging, and cybersecurity.
Recently, Generative Adversarial Networks (GANs) are shown to be effective in detecting anomalies in time series data.
We propose a new GAN model, named Adjusted-LSTM GAN (ALGAN), which adjusts the output of an LSTM network for improved anomaly detection.
arXiv Detail & Related papers (2023-08-13T02:17:19Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Time Series Anomaly Detection via Reinforcement Learning-Based Model
Selection [3.1692938090731584]
Time series anomaly detection is of critical importance for the reliable and efficient operation of real-world systems.
In this work, we assume that a pool of anomaly detection models is accessible and propose to utilize reinforcement learning to dynamically select a candidate model.
It is demonstrated that the proposed strategy can outperforms all baseline models in terms of overall performance.
arXiv Detail & Related papers (2022-05-19T22:10:35Z) - Heteroscedastic Temporal Variational Autoencoder For Irregular Time Series [15.380441563675243]
We propose a new deep learning framework for irregularly sampled time series that we call the Heteroscedastic Temporal Variational Autoencoder (HeTVAE)
HeTVAE includes a novel input layer to encode information about input observation sparsity, a temporal VAE architecture to propagate uncertainty due to input sparsity, and a heteroscedastic output layer to enable variable uncertainty in output due to variables.
Our results show that the proposed architecture is better able to reflect variable uncertainty through time sparse and irregular sampling than a range of baseline and traditional models, as well as recently proposed deep latent variable models that use
arXiv Detail & Related papers (2021-07-23T16:59:21Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.