Dual adversarial and contrastive network for single-source domain generalization in fault diagnosis
- URL: http://arxiv.org/abs/2407.13978v2
- Date: Fri, 07 Feb 2025 03:35:26 GMT
- Title: Dual adversarial and contrastive network for single-source domain generalization in fault diagnosis
- Authors: Guangqiang Li, M. Amine Atoui, Xiangshun Li,
- Abstract summary: This paper proposes a dual adversarial and contrastive network (DAC) for single-source domain generalization fault diagnosis.
The main idea of DAC is to generate diverse sample features and extract domain-invariant feature representations.
Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DAC achieves high classification accuracy on unseen modes.
- Score: 1.9389881806157316
- License:
- Abstract: Domain generalization achieves fault diagnosis on unseen modes. In process industrial systems, fault samples are limited, and it is quite common that the available fault data are from a single mode. Extracting domain-invariant features from single-mode data for unseen mode fault diagnosis poses challenges. Existing methods utilize a generator module to simulate samples of unseen modes. However, multi-mode samples contain complex spatiotemporal information, which brings significant difficulties to accurate sample generation. To solve this problem, this paper proposed a dual adversarial and contrastive network (DACN) for single-source domain generalization in fault diagnosis. The main idea of DACN is to generate diverse sample features and extract domain-invariant feature representations. An adversarial pseudo-sample feature generation strategy is developed to create fake unseen mode sample features with sufficient semantic information and diversity, leveraging adversarial learning between the feature transformer and domain-invariant feature extractor. An enhanced domain-invariant feature extraction strategy is designed to capture common feature representations across multi-modes, utilizing contrastive learning and adversarial learning between the domain-invariant feature extractor and the discriminator. Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DACN achieves high classification accuracy on unseen modes while maintaining a small model size.
Related papers
- AMM-Diff: Adaptive Multi-Modality Diffusion Network for Missing Modality Imputation [2.8498944632323755]
In clinical practice, full imaging is not always feasible, often due to complex acquisition protocols, stringent privacy regulations, or specific clinical needs.
A promising solution is missing data imputation, where absent modalities are generated from available ones.
We propose an Adaptive Multi-Modality Diffusion Network (AMM-Diff), a novel diffusion-based generative model capable of handling any number of input modalities and generating the missing ones.
arXiv Detail & Related papers (2025-01-22T12:29:33Z) - Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation [1.93061220186624]
Domain-invariant representation learning is a powerful method for domain generalization.
Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data.
We propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space.
arXiv Detail & Related papers (2024-11-22T12:06:24Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Multi-Class Anomaly Detection based on Regularized Discriminative
Coupled hypersphere-based Feature Adaptation [85.15324009378344]
This paper introduces a new model by including class discriminative properties obtained by a modified Regularized Discriminative Variational Auto-Encoder (RD-VAE) in the feature extraction process.
The proposed Regularized Discriminative Coupled-hypersphere-based Feature Adaptation (RD-CFA) forms a solution for multi-class anomaly detection.
arXiv Detail & Related papers (2023-11-24T14:26:07Z) - MTS-DVGAN: Anomaly Detection in Cyber-Physical Systems using a Dual
Variational Generative Adversarial Network [7.889342625283858]
Deep generative models are promising in detecting novel cyber-physical attacks, mitigating the vulnerability of Cyber-physical systems (CPSs) without relying on labeled information.
This article proposes a novel unsupervised dual variational generative adversarial model named MST-DVGAN.
The central concept is to enhance the model's discriminative capability by widening the distinction between reconstructed abnormal samples and their normal counterparts.
arXiv Detail & Related papers (2023-11-04T11:19:03Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.