Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI
- URL: http://arxiv.org/abs/2405.04974v1
- Date: Wed, 8 May 2024 11:26:49 GMT
- Title: Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI
- Authors: Keqiang Fan, Xiaohao Cai, Mahesan Niranjan,
- Abstract summary: Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
- Score: 1.8420387715849447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks, particularly in image generation. However, their notable performance heavily relies on labelled datasets, which limits their application in medical images due to the associated high-cost annotations. Current DPM-related methods for lesion detection in medical imaging, which can be categorized into two distinct approaches, primarily rely on image-level annotations. The first approach, based on anomaly detection, involves learning reference healthy brain representations and identifying anomalies based on the difference in inference results. In contrast, the second approach, resembling a segmentation task, employs only the original brain multi-modalities as prior information for generating pixel-level annotations. In this paper, our proposed model - discrepancy distribution medical diffusion (DDMD) - for lesion detection in brain MRI introduces a novel framework by incorporating distinctive discrepancy features, deviating from the conventional direct reliance on image-level annotations or the original brain modalities. In our method, the inconsistency in image-level annotations is translated into distribution discrepancies among heterogeneous samples while preserving information within homogeneous samples. This property retains pixel-wise uncertainty and facilitates an implicit ensemble of segmentation, ultimately enhancing the overall detection performance. Thorough experiments conducted on the BRATS2020 benchmark dataset containing multimodal MRI scans for brain tumour detection demonstrate the great performance of our approach in comparison to state-of-the-art methods.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
We propose the first diffusion-based model (named DiffMIC) to address general medical image classification.
Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-03-19T09:15:45Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Unsupervised Anomaly Detection in MR Images using Multi-Contrast
Information [3.7273619690170796]
Anomaly detection in medical imaging is to distinguish the relevant biomarkers of diseases from those of normal tissues.
Deep supervised learning methods have shown potentials in various detection tasks, but its performances would be limited in medical imaging fields.
In this paper, we developed an unsupervised learning framework for pixel-wise anomaly detection in multi-contrast MRI.
arXiv Detail & Related papers (2021-05-02T13:05:36Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.