論文の概要: Reservoir-Computing Model for Mapping and Forecasting Neuronal
Interactions from Electrophysiological Data
- arxiv url: http://arxiv.org/abs/2311.03131v2
- Date: Tue, 23 Jan 2024 17:29:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 18:54:52.532653
- Title: Reservoir-Computing Model for Mapping and Forecasting Neuronal
Interactions from Electrophysiological Data
- Title(参考訳): 電気生理学的データからニューロンの相互作用をマッピングし予測するための貯水池計算モデル
- Authors: Ilya Auslender, Giorgio Letti, Yasaman Heydari, Clara Zaccaria,
Lorenzo Pavesi
- Abstract要約: 与えられたネットワークの形態と機能を取得するための計算モデルを開発する。
本研究では,ネットワークの接続マップを一般的な手法よりも高精度に予測できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electrophysiological nature of neuronal networks allows to reveal various
interactions between different cell units at a very short time-scales. One of
the many challenges in analyzing these signals is to retrieve the morphology
and functionality of a given network. In this work we developed a computational
model, based on Reservoir Computing Network (RCN) architecture, which decodes
the spatio-temporal data from electro-physiological measurements of neuronal
cultures and reconstructs the network structure on a macroscopic domain,
representing the connectivity between neuronal units. We demonstrate that the
model can predict the connectivity map of the network with higher accuracy than
the common methods such as Cross-Correlation and Transfer-Entropy. In addition,
we experimentally demonstrate the ability of the model to predict a network
response to a specific input, such as localized stimulus.
- Abstract(参考訳): 神経ネットワークの電気生理学的性質は、非常に短い時間スケールで異なる細胞ユニット間の様々な相互作用を明らかにすることができる。
これらの信号を分析する多くの課題の1つは、与えられたネットワークの形態と機能を取得することである。
本研究では,Reservoir Computing Network (RCN) アーキテクチャに基づく計算モデルを構築し,神経培養の電気生理学的測定から時空間データをデコードし,ニューロンユニット間の接続性を表すマクロ領域上のネットワーク構造を再構築した。
本研究では,クロスコリレーションやトランスファーエントロピーといった一般的な手法よりも高い精度でネットワークの接続マップを予測できることを実証する。
さらに,局所的な刺激など,特定の入力に対するネットワーク応答を予測するモデルの有効性を実験的に実証した。
関連論文リスト
- Statistical tuning of artificial neural network [0.0]
本研究では、ニューラルネットワークの理解を強化する方法を紹介し、特に1つの隠蔽層を持つモデルに焦点を当てる。
本稿では,入力ニューロンの意義を統計的に評価し,次元減少のためのアルゴリズムを提案する。
この研究は、ニューラルネットワークを解釈するための堅牢な統計フレームワークを提示することにより、説明可能な人工知能の分野を前進させる。
論文 参考訳(メタデータ) (2024-09-24T19:47:03Z) - Reusability report: Prostate cancer stratification with diverse
biologically-informed neural architectures [7.417447233454902]
前立腺がんの病態をモデル化するために、生物学的に情報を得た疎結合(P-NET)のフィードフォワードニューラルネットワークが提示された。
我々は、Reactomeの生物学的経路によるネットワークスペーサー化の寄与を定量化し、P-NETの優れた性能にその重要性を確認した。
同じトレーニングデータを用いて3種類のグラフニューラルネットワークを実験し、異なるモデル間の臨床予測一致について検討した。
論文 参考訳(メタデータ) (2023-09-28T17:51:02Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Approximate Bisimulation Relations for Neural Networks and Application
to Assured Neural Network Compression [3.0839245814393728]
本稿では,フィードフォワードニューラルネットワークに対する近似バイシミュレーション関係の概念を提案する。
2つのニューラルネットワーク間の近似バイシミュレーション誤差を計算するために,新しいニューラルネットワークマージ法を開発した。
論文 参考訳(メタデータ) (2022-02-02T16:21:19Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - Persistent Homology Captures the Generalization of Neural Networks
Without A Validation Set [0.0]
本稿では,代数的トポロジー,特に永続的ホモロジーを用いたニューラルネットワークのトレーニングについて考察する。
ニューラルネットワークの単純な複雑な表現を用いて、ニューラルネットワーク学習プロセスにおけるPHダイアグラム距離の進化について検討する。
その結果,連続するニューラルネットワーク状態間のPHダイアグラム距離は,検証精度と相関していることがわかった。
論文 参考訳(メタデータ) (2021-05-31T09:17:31Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
U-Netニューラルネットワークは、完全な畳み込みニューラルネットワークよりも正確に解剖学的基準点の検出を可能にする。
U-Net ニューラルネットワークによる解剖学的基準点検出の結果は,歯科矯正医のグループによる基準点検出の平均値に近づいた。
論文 参考訳(メタデータ) (2020-05-25T13:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。