論文の概要: Ziya2: Data-centric Learning is All LLMs Need
- arxiv url: http://arxiv.org/abs/2311.03301v2
- Date: Thu, 4 Apr 2024 17:41:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 20:03:06.902126
- Title: Ziya2: Data-centric Learning is All LLMs Need
- Title(参考訳): Ziya2: データ中心学習はすべてのLLMを必要とする
- Authors: Ruyi Gan, Ziwei Wu, Renliang Sun, Junyu Lu, Xiaojun Wu, Dixiang Zhang, Kunhao Pan, Junqing He, Yuanhe Tian, Ping Yang, Qi Yang, Hao Wang, Jiaxing Zhang, Yan Song,
- Abstract要約: 基礎モデルとしてLLaMA2を採用した13億のパラメータを持つモデルであるZiya2を提案する。
実験の結果、Ziya2は他のモデルを特にオープンソースと比較して有望な結果で、複数のベンチマークで大きく上回っていることがわかった。
- 参考スコア(独自算出の注目度): 41.44909548662012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various large language models (LLMs) have been proposed in recent years, including closed- and open-source ones, continually setting new records on multiple benchmarks. However, the development of LLMs still faces several issues, such as high cost of training models from scratch, and continual pre-training leading to catastrophic forgetting, etc. Although many such issues are addressed along the line of research on LLMs, an important yet practical limitation is that many studies overly pursue enlarging model sizes without comprehensively analyzing and optimizing the use of pre-training data in their learning process, as well as appropriate organization and leveraging of such data in training LLMs under cost-effective settings. In this work, we propose Ziya2, a model with 13 billion parameters adopting LLaMA2 as the foundation model, and further pre-trained on 700 billion tokens, where we focus on pre-training techniques and use data-centric optimization to enhance the learning process of Ziya2 on different stages. We define three data attributes and firstly establish data-centric scaling laws to illustrate how different data impacts LLMs. Experiments show that Ziya2 significantly outperforms other models in multiple benchmarks especially with promising results compared to representative open-source ones. Ziya2 (Base) is released at https://huggingface.co/IDEA-CCNL/Ziya2-13B-Base and https://modelscope.cn/models/Fengshenbang/Ziya2-13B-Base/summary.
- Abstract(参考訳): 近年、クローズドおよびオープンソースを含む様々な大規模言語モデル(LLM)が提案されており、複数のベンチマークで新しいレコードを継続的に設定している。
しかし、LLMの開発は、スクラッチからのトレーニングモデルの高コスト化や、破滅的な忘れ込みにつながる継続的な事前トレーニングなど、いくつかの問題に直面している。
このような課題の多くはLLMの研究の過程で解決されているが、多くの研究は、学習プロセスにおける事前学習データの使用を包括的に分析・最適化することなく、モデルサイズの拡大を徹底的に追求している。
本研究では、基礎モデルとしてLLaMA2を採用した13億のパラメータを持つモデルであるZiya2を提案し、さらに700億のトークンを事前訓練し、事前学習技術に注目し、異なる段階におけるZiya2の学習プロセスを強化するためにデータ中心の最適化を利用する。
3つのデータ属性を定義し、まずデータ中心のスケーリング法則を確立し、異なるデータがLLMに与える影響を説明する。
実験の結果、Ziya2は他のモデルを特にオープンソースと比較して有望な結果で、複数のベンチマークで大きく上回っていることがわかった。
Ziya2 (Base)はhttps://huggingface.co/IDEA-CCNL/Ziya2-13B-Baseとhttps://modelscope.cn/models/Fengshenbang/Ziya2-13B-Base/summaryでリリースされた。
関連論文リスト
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
我々はLarge Language Models (LLMs) を用いたノード分類のための包括的でテストベッドを開発する。
10のデータセット、8つのLLMベースのアルゴリズム、3つの学習パラダイムを含み、新しいメソッドとデータセットで簡単に拡張できるように設計されている。
パフォーマンスに影響を与える重要な設定を決定するために、広範な実験、トレーニング、および2200以上のモデルの評価を行います。
その結果, LLM法は半教師付き環境で従来の手法を著しく上回り, その利点は教師付き環境ではごくわずかである,という8つの知見が得られた。
論文 参考訳(メタデータ) (2025-02-02T15:56:05Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud [12.651588927599441]
モデル微調整の効率を大幅に向上するために,データ拡張モデル群を提案する。
これらのモデルは十分に小さなLLMに基づいて訓練され、推論コストの低い重要な機能をサポートする。
実験と応用研究は、我々のアプローチの有効性を証明した。
論文 参考訳(メタデータ) (2024-12-06T09:04:12Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
大規模言語モデル(LLM)は、大量のデータセットの事前トレーニングを通じて、広範囲な世界の知識を符号化する。
我々は,事前学習したLLMが記憶する知識の量に基づいて,教師付き微調整(SFT)データを分類した。
実験の結果,SFTの段階では60個のデータポイントが事前学習中に符号化された知識を活性化することができ,LLMがQAタスクを実行できることがわかった。
論文 参考訳(メタデータ) (2024-09-24T07:38:38Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
大規模言語モデル(LLM)は自然言語処理(NLP)において顕著な成功を収めた
モデルが1兆のパラメータ範囲に成長するにつれて、計算とメモリのコストは大幅に増加する。
これにより、多くの研究者がこれらのモデルのトレーニングや適用に必要なリソースにアクセスするのが難しくなる。
論文 参考訳(メタデータ) (2024-09-07T13:57:41Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。