論文の概要: Achieving Peak Performance for Large Language Models: A Systematic Review
- arxiv url: http://arxiv.org/abs/2409.04833v1
- Date: Sat, 7 Sep 2024 13:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:31:31.253028
- Title: Achieving Peak Performance for Large Language Models: A Systematic Review
- Title(参考訳): 大規模言語モデルにおけるピークパフォーマンスの達成: 体系的レビュー
- Authors: Zhyar Rzgar K Rostam, Sándor Szénási, Gábor Kertész,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)において顕著な成功を収めた
モデルが1兆のパラメータ範囲に成長するにつれて、計算とメモリのコストは大幅に増加する。
これにより、多くの研究者がこれらのモデルのトレーニングや適用に必要なリソースにアクセスするのが難しくなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) は自然言語処理 (NLP) において顕著な成功を収めている。
LLMは高い性能を達成するために非常に多くのパラメータを必要とする。
モデルが1兆パラメータの範囲に成長するにつれて、計算とメモリのコストは大幅に増加する。
これにより、多くの研究者がこれらのモデルのトレーニングや適用に必要なリソースにアクセスするのが難しくなる。
LLMパフォーマンスの最適化には、2つの主要なアプローチがある: 特定のタスクのための訓練済みモデルを微調整して最先端のパフォーマンスを達成すること、コストを削減したり、同様のパフォーマンスを維持しながらトレーニング時間を改善すること。
本稿では,システムレビューとメタアナリシス(PRISMA)に関する優先報告項目に続き,体系的文献レビュー(SLR)について述べる。
2017年から2023年12月まで、65の出版物をレビューし、5つのデータベースから検索した。
本研究は, 精度を犠牲にすることなく, 最先端の結果を達成しつつ, LLMの最適化と高速化を行う手法を提案する。
まず、言語モデリングの開発の概要と、一般的に使われているフレームワークやライブラリの詳細な説明、LLMトレーニング、LLM推論、システムサービスという3つのクラスに基づいたLLMの改善と高速化のための分類について概説する。
次に、これらの戦略の分類と分類を伴う、トレーニング最適化、ハードウェア最適化、スケーラビリティ、信頼性などの最近の最適化と加速戦略について検討する。
最後に、モデルトレーニングの最適化と推論効率の向上に関する2つのケーススタディを用いて、各クラスと戦略の詳細な比較を行う。
これらのケーススタディは、LCMのリソース制限に対処し、性能を維持しながら実践的なアプローチを示す。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - Performance Law of Large Language Models [58.32539851241063]
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを導くために用いられる。
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを広範な実験なしで導くのに利用できる。
論文 参考訳(メタデータ) (2024-08-19T11:09:12Z) - SLMRec: Empowering Small Language Models for Sequential Recommendation [38.51895517016953]
シーケンシャルレコメンデーションタスクでは、過去のインタラクションを考慮して、ユーザが対話する可能性のある次の項目を予測する。
最近の研究は、LCMがシーケンシャルレコメンデーションシステムに与える影響を実証している。
LLM の巨大なサイズのため、現実のプラットフォームに LLM ベースのモデルを適用するのは非効率で実用的ではない。
論文 参考訳(メタデータ) (2024-05-28T07:12:06Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.673219028826173]
本稿では,OR-Instruct という,最適化モデル問題のための半自動データ合成フレームワークを提案する。
我々は、70億のパラメータ(ORLM)を持つ様々なオープンソースのLDMを訓練する。
結果として得られたモデルは、NL4OPT、MAMO、IndustrialORベンチマークにまたがって最先端のパフォーマンスを達成し、大幅な最適化モデリング能力を示す。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Dissecting the Runtime Performance of the Training, Fine-tuning, and
Inference of Large Language Models [26.2566707495948]
大規模言語モデル(LLM)は、学術と産業の両方で大きく進歩している。
我々は,事前学習,微調整,LLMを異なるサイズで提供する場合のエンドツーエンド性能をベンチマークする。
次に,LLMにおける計算処理や通信演算子など,サブモジュールの詳細なランタイム解析を行う。
論文 参考訳(メタデータ) (2023-11-07T03:25:56Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。