論文の概要: Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization
- arxiv url: http://arxiv.org/abs/2311.03351v4
- Date: Sun, 17 Mar 2024 04:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 03:12:40.250864
- Title: Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization
- Title(参考訳): Uni-O4: マルチステップオンライン最適化によるオンラインとオフラインの深層強化学習の統合
- Authors: Kun Lei, Zhengmao He, Chenhao Lu, Kaizhe Hu, Yang Gao, Huazhe Xu,
- Abstract要約: 従来のアプローチでは、オフラインとオンラインの学習を別々の手順として扱い、冗長な設計と限られたパフォーマンスをもたらす。
オフライン学習とオンライン学習の両方に、政治上の目的を利用するUni-o4を提案する。
本手法は,オフラインとオフラインのファインチューニング学習の両方において,最先端の性能を実現することを実証する。
- 参考スコア(独自算出の注目度): 24.969834057981046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: https://lei-kun.github.io/uni-o4/ .
- Abstract(参考訳): オフラインとオンライン強化学習(RL)を組み合わせることは、効率的かつ安全な学習に不可欠である。
しかし、従来の手法はオフラインとオンラインの学習を個別の手順として扱い、冗長な設計と限られた性能をもたらす。
私たちは、余分な保守主義や正規化を導入することなく、簡単で効果的なオフラインとオンラインの学習を達成できますか?
本研究では,オンライン学習とオフライン学習の両面において,政治上の目的を生かしたUni-o4を提案する。
目的のアライメントを2つのフェーズで保持することで、RLエージェントはオフラインとオンラインの学習をシームレスに転送することができる。
この特性は学習パラダイムの柔軟性を高め、事前学習、微調整、オフライン、オンライン学習の任意の組み合わせを可能にする。
オフラインフェーズでは、特にUni-o4は、さまざまなアンサンブルポリシーを活用して、推定された振る舞いポリシーとオフラインデータセット間のミスマッチ問題に対処する。
単純なオフラインポリシー評価(OPE)アプローチにより、Uni-o4はマルチステップポリシーを安全に改善することができる。
以上の手法を用いることで、これらの2つのパラダイムの融合により、より優れたオフライン初期化と、安定かつ迅速なオンライン微調整能力が得られることを示す。
現実のロボットタスクを通じて、このパラダイムの利点を、挑戦的な、以前は目に見えない現実の環境に迅速に展開する上で強調する。
さらに,多数のシミュレーションベンチマークを用いた総合評価により,本手法がオフラインとオフラインのファインチューニング学習の両方で最先端の性能を実現することを実証した。
私たちのWebサイト: https://lei-kun.github.io/uni-o4/
関連論文リスト
- Bayesian Design Principles for Offline-to-Online Reinforcement Learning [50.97583504192167]
オフラインからオンラインへの微調整は、探索にコストがかかる、あるいは安全でない、現実世界のアプリケーションにとって極めて重要です。
本稿では,オフラインからオフラインまでの微調整のジレンマに対処する:エージェントが悲観的のままであれば,より良いポリシーを習得できないかもしれないが,楽観的になった場合,性能が突然低下する可能性がある。
このようなジレンマを解決するにはベイズ設計の原則が不可欠であることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:31:07Z) - Ensemble Successor Representations for Task Generalization in Offline-to-Online Reinforcement Learning [8.251711947874238]
オフラインRLは、オフラインポリシーを提供することによって、有望なソリューションを提供する。
既存の手法では,オフラインからオンラインへの適応におけるタスク一般化問題を考慮せずに,オフラインとオンラインの学習を同一タスクで行う。
本研究は、オンラインRLにおけるタスク一般化のための後継表現の探索を基盤とし、オフライン-オンライン学習を組み込むためのフレームワークを拡張した。
論文 参考訳(メタデータ) (2024-05-12T08:52:52Z) - Offline Retraining for Online RL: Decoupled Policy Learning to Mitigate
Exploration Bias [96.14064037614942]
オンライン微調整終了時の方針抽出段階であるオフラインリトレーニングを提案する。
楽観的(探索的)ポリシーは環境と相互作用するために使用され、別の悲観的(探索的)ポリシーは観察されたすべてのデータに基づいて訓練され、評価される。
論文 参考訳(メタデータ) (2023-10-12T17:50:09Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
我々はENsemble-based Offline-To-Online (ENOTO) RLという新しいフレームワークを提案する。
Q-networksの数を増やすことで、オフラインの事前トレーニングとオンラインの微調整を、パフォーマンスを低下させることなくシームレスに橋渡しします。
実験により,ENOTOは既存のオフラインRL手法のトレーニング安定性,学習効率,最終性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-06-12T05:10:10Z) - Finetuning from Offline Reinforcement Learning: Challenges, Trade-offs
and Practical Solutions [30.050083797177706]
オフライン強化学習(RL)では、環境とのインタラクションなしに、オフラインデータセットから有能なエージェントをトレーニングすることができる。
このようなオフラインモデルのオンライン微調整により、パフォーマンスがさらに向上する。
より高速な改善のために、標準的なオンラインオフラインアルゴリズムを使用することが可能であることを示す。
論文 参考訳(メタデータ) (2023-03-30T14:08:31Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
我々は、エージェントがオフラインデータセットから最初に学習され、オンラインにトレーニングされたオフライン-オンライン設定について検討する。
オフラインおよびオンラインデータを効果的に活用するためのAdaptive Policy Learningというフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-14T08:13:21Z) - Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
Reinforcement Learning [80.25648265273155]
オフライン強化学習は、固定データセットから学習することで、環境と対話することなくエージェントの動作を学ぶことができる。
オンラインの微調整中、オフラインからオンラインデータへの突然の分散シフトにより、事前訓練されたエージェントのパフォーマンスが急速に低下する可能性がある。
エージェントの性能と訓練安定性に基づいて,オンラインファインチューニングにおける行動クローンの損失を適応的に評価することを提案する。
実験の結果,提案手法はD4RLベンチマークにおいて,最先端のオフライン-オンライン強化学習性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-10-25T09:08:26Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
モデルに基づくオフライン強化学習(MOORe)アルゴリズムを提案する。
実験結果から,本アルゴリズムはオフラインからオンラインへの移行を円滑に行い,サンプル効率のよいオンライン適応を可能にした。
論文 参考訳(メタデータ) (2022-01-25T03:14:57Z) - A Workflow for Offline Model-Free Robotic Reinforcement Learning [117.07743713715291]
オフライン強化学習(RL)は、オンラインインタラクションを伴わずに、事前の経験のみを活用することによって、学習制御ポリシを可能にする。
本研究では,教師付き学習問題に対して,比較的よく理解されたオフラインRLと類似した実践的ワークフローを開発する。
オンラインチューニングを伴わない効果的なポリシー作成におけるこのワークフローの有効性を実証する。
論文 参考訳(メタデータ) (2021-09-22T16:03:29Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
エージェントは大量のオフライン体験データにアクセスでき、オンライン環境へのアクセスは極めて限られている。
我々の主な洞察は、様々な行動からなるオフラインデータを提示すると、このデータを活用する効果的な方法は、反復的かつ時間的に拡張された原始的行動の連続的な空間を抽出することである。
オフラインポリシ最適化のメリットに加えて,このようなオフラインプリミティブ学習の実施も,数発の模倣学習の改善に有効であることを示す。
論文 参考訳(メタデータ) (2020-10-26T14:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。