Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
- URL: http://arxiv.org/abs/2311.03583v2
- Date: Mon, 29 Jul 2024 16:13:22 GMT
- Title: Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
- Authors: Abbas Mehrabian, Ankit Anand, Hyunjik Kim, Nicolas Sonnerat, Matej Balog, Gheorghe Comanici, Tudor Berariu, Andrew Lee, Anian Ruoss, Anna Bulanova, Daniel Toyama, Sam Blackwell, Bernardino Romera Paredes, Petar Veličković, Laurent Orseau, Joonkyung Lee, Anurag Murty Naredla, Doina Precup, Adam Zsolt Wagner,
- Abstract summary: This work studies a central extremal graph theory problem inspired by a 1975 conjecture of ErdHos.
It aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles.
- Score: 31.68823192070739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erd\H{o}s, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
Related papers
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - A Theoretical Analysis Of Nearest Neighbor Search On Approximate Near
Neighbor Graph [51.880164098926166]
Graph-based algorithms have demonstrated state-of-the-art performance in the nearest neighbor search (NN-Search) problem.
There exists a practice-to-theory gap in the graph-based NN-Search algorithms.
We present theoretical guarantees of solving NN-Search via greedy search on ANN-Graph for low dimensional and dense vectors.
arXiv Detail & Related papers (2023-03-10T21:18:34Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - Quantitative approach to Grover's quantum walk on graphs [62.997667081978825]
We study Grover's search algorithm focusing on continuous-time quantum walk on graphs.
Instead of finding specific graph topologies convenient for the related quantum walk, we fix the graph topology and vary the underlying graph endowed Laplacians.
arXiv Detail & Related papers (2022-07-04T19:33:06Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - GraphPAS: Parallel Architecture Search for Graph Neural Networks [12.860313120881996]
We propose a parallel graph architecture search (GraphPAS) framework for graph neural networks.
In GraphPAS, we explore the search space in parallel by designing a sharing-based evolution learning.
The experimental result shows that GraphPAS outperforms state-of-art models with efficiency and accuracy simultaneously.
arXiv Detail & Related papers (2021-12-07T02:55:24Z) - A deep learning guided memetic framework for graph coloring problems [15.426481600285724]
We present a new framework which combines a deep neural network with the best tools of "classical" metaheuristics for graph coloring.
A study of the contribution of deep learning in the algorithm highlights that it is possible to learn relevant patterns useful to obtain better solutions to this problem.
arXiv Detail & Related papers (2021-09-13T13:17:41Z) - A step towards neural genome assembly [0.0]
We train the MPNN model with max-aggregator to execute several algorithms for graph simplification.
We show that the algorithms were learned successfully and can be scaled to graphs of sizes up to 20 times larger than the ones used in training.
arXiv Detail & Related papers (2020-11-10T10:12:19Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.