BlockEmulator: An Emulator Enabling to Test Blockchain Sharding Protocols
- URL: http://arxiv.org/abs/2311.03612v4
- Date: Tue, 24 Dec 2024 10:54:50 GMT
- Title: BlockEmulator: An Emulator Enabling to Test Blockchain Sharding Protocols
- Authors: Huawei Huang, Guang Ye, Qinglin Yang, Qinde Chen, Zhaokang Yin, Xiaofei Luo, Jianru Lin, Taotao Li, Zibin Zheng,
- Abstract summary: BlockEmulator is an experimental platform for emulating blockchain sharding mechanisms.
It adopts a lightweight blockchain architecture so developers can only focus on implementing their new protocols or mechanisms.
We have made BlockEmulator open-source in Github.
- Score: 18.755112831811836
- License:
- Abstract: Numerous blockchain simulators have been proposed to allow researchers to simulate mainstream blockchains. However, we have not yet found a testbed that enables researchers to develop and evaluate their new consensus algorithms or new protocols for blockchain sharding systems. To fill this gap, we developed BlockEmulator, which is designed as an experimental platform, particularly for emulating blockchain sharding mechanisms. BlockEmulator adopts a lightweight blockchain architecture so developers can only focus on implementing their new protocols or mechanisms. Using layered modules and useful programming interfaces offered by BlockEmulator, researchers can implement a new protocol with minimum effort. Through experiments, we test various functionalities of BlockEmulator in two steps. Firstly, we prove the correctness of the emulation results yielded by BlockEmulator by comparing the theoretical analysis with the observed experiment results. Secondly, other experimental results demonstrate that BlockEmulator can facilitate measuring a series of metrics, including throughput, transaction confirmation latency, cross-shard transaction ratio, the queuing status of transaction pools, workload distribution across blockchain shards, etc. We have made BlockEmulator open-source in Github.
Related papers
- Formal Model Guided Conformance Testing for Blockchains [1.4838910416636741]
We present a framework that performs protocol conformance testing using a formal model of the protocol.
Our framework consists of two complementary components that use the components as trace generators and checkers.
arXiv Detail & Related papers (2025-01-15T03:20:13Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Gophy: Novel Proof-of-Useful-Work blockchain architecture for High Energy Physics [0.0]
The architecture is being implemented using Golang and can be run inside the CbmRoot software environment.
The blockchain features a token-based cryptocurrency that is rewarded to miners that donate computational power.
The implementation named gophy is being implemented in Golang and is expected to be open-sourced before the end of 2024.
arXiv Detail & Related papers (2024-04-13T22:34:48Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - DAG-Sword: A Simulator of Large-Scale Network Topologies for DAG-Oriented Proof-of-Work Blockchains [2.0124254762298794]
We focus on DAG-based consensus protocols and present a discrete-event simulator for them.
Our simulator can simulate realistic blockchain networks created from data of a Bitcoin network.
We extend the results of the related work that contains a small-scale network of 10 nodes by the results obtained on a large-scale network with 7000 nodes.
arXiv Detail & Related papers (2023-11-08T12:31:11Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Proof of Learning (PoLe): Empowering Machine Learning with Consensus
Building on Blockchains [7.854034211489588]
We propose a new consensus mechanism, Proof of Learning (PoLe), which directs the spent for consensus toward optimization of neural networks (NN)
In our mechanism, the training/testing data are released to the entire blockchain network (BCN) and the consensus nodes train NN models on the data.
We show that PoLe can achieve a more stable block generation rate, which leads to more efficient transaction processing.
arXiv Detail & Related papers (2020-07-29T22:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.