Weighting-Based Treatment Effect Estimation via Distribution Learning
- URL: http://arxiv.org/abs/2012.13805v4
- Date: Mon, 8 May 2023 15:57:32 GMT
- Title: Weighting-Based Treatment Effect Estimation via Distribution Learning
- Authors: Dongcheng Zhang, Kunpeng Zhang
- Abstract summary: We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
- Score: 14.438302755258547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing weighting methods for treatment effect estimation are often built
upon the idea of propensity scores or covariate balance. They usually impose
strong assumptions on treatment assignment or outcome model to obtain unbiased
estimation, such as linearity or specific functional forms, which easily leads
to the major drawback of model mis-specification. In this paper, we aim to
alleviate these issues by developing a distribution learning-based weighting
method. We first learn the true underlying distribution of covariates
conditioned on treatment assignment, then leverage the ratio of covariates'
density in the treatment group to that of the control group as the weight for
estimating treatment effects. Specifically, we propose to approximate the
distribution of covariates in both treatment and control groups through
invertible transformations via change of variables. To demonstrate the
superiority, robustness, and generalizability of our method, we conduct
extensive experiments using synthetic and real data. From the experiment
results, we find that our method for estimating average treatment effect on
treated (ATT) with observational data outperforms several cutting-edge
weighting-only benchmarking methods, and it maintains its advantage under a
doubly-robust estimation framework that combines weighting with some advanced
outcome modeling methods.
Related papers
- Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
We propose a novel regression adjustment method designed for estimating distributional treatment effect parameters in randomized experiments.
Our approach incorporates pre-treatment co-treatments into a distributional regression framework, utilizing machine learning techniques to improve the precision of distributional treatment effect estimators.
arXiv Detail & Related papers (2024-07-22T20:28:29Z) - Heterogeneous Treatment Effects in Panel Data [1.5535138991304305]
We propose and evaluate a new method that partitions observations into disjoint clusters with similar treatment effects using a regression tree.
Our theoretical results establish the convergence of the resulting estimates to the true treatment effects.
arXiv Detail & Related papers (2024-06-09T04:02:08Z) - Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing [43.259723628010896]
We advocate the direct approach of augmenting training individuals with independently sampled treatments and inferred counterfactual outcomes.
We evaluate our method on five benchmarks and show that our method outperforms six state-of-the-art methods on the counterfactual estimation error.
arXiv Detail & Related papers (2024-01-27T15:52:58Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
We consider evaluating the causal effects of dynamic treatments in a data-driven way under a selection-on-observables assumption.
We make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications.
We demonstrate that the estimators are regularityally normal and $sqrtn$-consistent under specific conditions.
arXiv Detail & Related papers (2020-12-01T09:55:40Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.