On the Impact of Overparameterization on the Training of a Shallow
Neural Network in High Dimensions
- URL: http://arxiv.org/abs/2311.03794v1
- Date: Tue, 7 Nov 2023 08:20:31 GMT
- Title: On the Impact of Overparameterization on the Training of a Shallow
Neural Network in High Dimensions
- Authors: Simon Martin (DI-ENS, LPENS), Francis Bach (DI-ENS), Giulio Biroli
(LPENS)
- Abstract summary: We study the training dynamics of a shallow neural network with quadratic activation functions and quadratic cost.
In line with previous works on the same neural architecture, the optimization is performed following the gradient flow on the population risk.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the training dynamics of a shallow neural network with quadratic
activation functions and quadratic cost in a teacher-student setup. In line
with previous works on the same neural architecture, the optimization is
performed following the gradient flow on the population risk, where the average
over data points is replaced by the expectation over their distribution,
assumed to be Gaussian.We first derive convergence properties for the gradient
flow and quantify the overparameterization that is necessary to achieve a
strong signal recovery. Then, assuming that the teachers and the students at
initialization form independent orthonormal families, we derive a
high-dimensional limit for the flow and show that the minimal
overparameterization is sufficient for strong recovery. We verify by numerical
experiments that these results hold for more general initializations.
Related papers
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Stabilizing RNN Gradients through Pre-training [3.335932527835653]
Theory of learning proposes to prevent the gradient from exponential growth with depth or time, to stabilize and improve training.
We extend known stability theories to encompass a broader family of deep recurrent networks, requiring minimal assumptions on data and parameter distribution.
We propose a new approach to mitigate this issue, that consists on giving a weight of a half to the time and depth contributions to the gradient.
arXiv Detail & Related papers (2023-08-23T11:48:35Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
We investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation.
We show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized.
arXiv Detail & Related papers (2023-05-17T02:26:34Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
We present a novel analysis of single-hidden-layer linear networks trained under gradient flow.
We show that the squared loss converges exponentially to its optimum.
We derive a novel non-asymptotic upper-bound on the distance between the trained network and the min-norm solution.
arXiv Detail & Related papers (2021-05-13T15:13:51Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well.
An emerging paradigm for describing this unexpected behavior is in terms of a emphdouble descent curve.
We provide a precise high-dimensional analysis of generalization with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks with gradient descent.
arXiv Detail & Related papers (2020-08-15T20:55:40Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z) - Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear
Networks [39.856439772974454]
We show that the width needed for efficient convergence to a global minimum is independent of the depth.
Our results suggest an explanation for the recent empirical successes found by initializing very deep non-linear networks according to the principle of dynamical isometry.
arXiv Detail & Related papers (2020-01-16T18:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.