論文の概要: P-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
- arxiv url: http://arxiv.org/abs/2311.04044v1
- Date: Tue, 7 Nov 2023 14:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 15:10:51.882363
- Title: P-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
- Title(参考訳): p-bench: 言語モデルのための多レベルプライバシー評価ベンチマーク
- Authors: Haoran Li, Dadi Guo, Donghao Li, Wei Fan, Qi Hu, Xin Liu, Chunkit
Chan, Duanyi Yao, Yangqiu Song
- Abstract要約: 言語モデル(LM)のプライバシー漏洩を経験的かつ直感的に定量化するベンチマークであるP-Benchを提案する。
DPパラメータで保護されたデータのプライバシを保護し、測定する代わりに、P-Benchは実際の使用中に無視された推論データのプライバシに光を当てる。
P-Benchは、実証的な評価結果として、予め定義されたプライバシー目標を持つLMに対する既存のプライバシ攻撃を実行する。
- 参考スコア(独自算出の注目度): 41.86590537265852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of language models (LMs) brings unprecedented
accessibility and usage for both models and users. On the one hand, powerful
LMs, trained with massive textual data, achieve state-of-the-art performance
over numerous downstream NLP tasks. On the other hand, more and more attention
is paid to unrestricted model accesses that may bring malicious privacy risks
of data leakage. To address these issues, many recent works propose
privacy-preserving language models (PPLMs) with differential privacy (DP).
Unfortunately, different DP implementations make it challenging for a fair
comparison among existing PPLMs. In this paper, we present P-Bench, a
multi-perspective privacy evaluation benchmark to empirically and intuitively
quantify the privacy leakage of LMs. Instead of only protecting and measuring
the privacy of protected data with DP parameters, P-Bench sheds light on the
neglected inference data privacy during actual usage. P-Bench first clearly
defines multi-faceted privacy objectives during private fine-tuning. Then,
P-Bench constructs a unified pipeline to perform private fine-tuning. Lastly,
P-Bench performs existing privacy attacks on LMs with pre-defined privacy
objectives as the empirical evaluation results. The empirical attack results
are used to fairly and intuitively evaluate the privacy leakage of various
PPLMs. We conduct extensive experiments on three datasets of GLUE for
mainstream LMs.
- Abstract(参考訳): 言語モデル(LM)の急速な開発は、モデルとユーザの両方に前例のないアクセシビリティと利用をもたらす。
一方、大量のテキストデータで訓練された強力なLMは、多くの下流NLPタスクに対して最先端のパフォーマンスを達成する。
一方で、データ漏洩の悪意あるプライバシーリスクをもたらす未制限のモデルアクセスには、ますます多くの注意が払われている。
これらの問題に対処するため、近年の多くの研究で、差分プライバシー(DP)を用いたプライバシー保護言語モデル(PPLM)が提案されている。
残念ながら、異なるDP実装は既存のPPLMと公正な比較を困難にしている。
本稿では,LMのプライバシー漏洩を経験的かつ直感的に定量化する多視点プライバシー評価ベンチマークであるP-Benchを提案する。
DPパラメータで保護されたデータのプライバシを保護し、測定する代わりに、P-Benchは実際の使用中に無視された推論データのプライバシに光を当てる。
P-Benchは最初、プライベートな微調整中に多面的なプライバシーの目的を明確に定義した。
次に、P-Benchは、プライベートな微調整を行う統一パイプラインを構築する。
最後に、P-Benchは、実証的な評価結果として、予め定義されたプライバシー目標を持つLMに対する既存のプライバシ攻撃を実行する。
様々なPPLMのプライバシー漏洩を公平かつ直感的に評価するために,経験的攻撃結果を用いている。
メインストリームLMのためのGLUEの3つのデータセットについて広範な実験を行った。
関連論文リスト
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - No Free Lunch Theorem for Privacy-Preserving LLM Inference [30.554456047738295]
本研究では,プライバシ保護型大規模言語モデル(LLM)を推定するためのフレームワークを開発する。
プライバシー保護とユーティリティの相互作用を調べるための、しっかりとした理論的基盤を築いている。
論文 参考訳(メタデータ) (2024-05-31T08:22:53Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
本稿では,LLMのプライバシ生成モデルであるPrivChatGPTという概念モデルを提案する。
PrivChatGPTは、データキュレーション/前処理中にユーザのプライバシを保護し、プライベートコンテキストの保存と大規模データのプライベートトレーニングプロセスという2つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-19T06:55:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Privacy Implications of Retrieval-Based Language Models [26.87950501433784]
本稿では,検索に基づくLM,特に$k$NN-LMにおけるプライバシリスクに関する最初の研究について述べる。
パラメトリックモデルよりも、$k$NN-LMsの方がプライベートデータストアから個人情報をリークする可能性が高いことがわかりました。
論文 参考訳(メタデータ) (2023-05-24T08:37:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。