論文の概要: LISBET: a machine learning model for the automatic segmentation of social behavior motifs
- arxiv url: http://arxiv.org/abs/2311.04069v2
- Date: Wed, 09 Oct 2024 10:08:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:30:24.788434
- Title: LISBET: a machine learning model for the automatic segmentation of social behavior motifs
- Title(参考訳): LISBET:社会行動モチーフの自動セグメンテーションのための機械学習モデル
- Authors: Giuseppe Chindemi, Benoit Girard, Camilla Bellone,
- Abstract要約: LISBET(LISBET Is a Social BEhavior Transformer)は,社会的相互作用の検出とセグメンテーションのための機械学習モデルである。
身体追跡データを用いた自己教師型学習により,広範囲な人的アノテーションの必要性を排除した。
生体内電気生理学的には,本モデルで同定されたモチーフに対応する腹側歯根膜領域の神経信号が明瞭であった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Social behavior is crucial for survival in many animal species, and a heavily investigated research subject. Current analysis methods generally rely on measuring animal interaction time or annotating predefined behaviors. However, these approaches are time consuming, human biased, and can fail to capture subtle behaviors. Here we introduce LISBET (LISBET Is a Social BEhavior Transformer), a machine learning model for detecting and segmenting social interactions. Using self-supervised learning on body tracking data, our model eliminates the need for extensive human annotation. We tested LISBET in three scenarios across multiple datasets in mice: supervised behavior classification, unsupervised motifs segmentation, and unsupervised animal phenotyping. Additionally, in vivo electrophysiology revealed distinct neural signatures in the Ventral Tegmental Area corresponding to motifs identified by our model. In summary, LISBET automates data annotation and reduces human bias in social behavior research, offering a promising approach to enhance our understanding of behavior and its neural correlates.
- Abstract(参考訳): 社会行動は多くの動物種において生存に不可欠であり、調査対象として研究が盛んである。
現在の分析手法は、動物との相互作用の時間を測定するか、事前に定義された行動に注釈を付けることに依存している。
しかしながら、これらのアプローチは時間がかかり、人間に偏りがあり、微妙な振る舞いを捉えるのに失敗する可能性がある。
LISBET(LISBET Is a Social BEhavior Transformer)は、社会的相互作用の検出とセグメンテーションのための機械学習モデルである。
身体追跡データを用いた自己教師型学習により,広範囲な人的アノテーションの必要性を排除した。
LISBETはマウスの行動分類,教師なしモチーフセグメンテーション,教師なし動物表現の3つのシナリオで試験した。
さらに, 生体電気生理学では, モデルで同定されたモチーフに相当し, 心室中隔領域に特異的な神経信号が認められた。
まとめると、LISBETはデータアノテーションを自動化し、社会行動研究における人間のバイアスを減らす。
関連論文リスト
- Emotion-Oriented Behavior Model Using Deep Learning [0.9176056742068812]
感情に基づく行動予測の精度は2尾のピアソン相関を用いて統計的に検証される。
本研究は,感情指向行動に基づく多面的人工エージェントインタラクションの基盤となる。
論文 参考訳(メタデータ) (2023-10-28T17:27:59Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - CNN-Based Action Recognition and Pose Estimation for Classifying Animal
Behavior from Videos: A Survey [0.0]
アクション認識(Action Recognition)は、1つ以上の被験者がトリミングされたビデオで行う活動の分類であり、多くの技術の基礎を形成する。
人間の行動認識のためのディープラーニングモデルは、過去10年間に進歩してきた。
近年,深層学習に基づく行動認識を取り入れた研究への関心が高まっている。
論文 参考訳(メタデータ) (2023-01-15T20:54:44Z) - Bodily Behaviors in Social Interaction: Novel Annotations and
State-of-the-Art Evaluation [0.0]
本稿では,社会相互作用に埋め込まれた複雑な身体行動の最初のアノテーションであるBBSIについて述べる。
心理学における過去の研究に基づいて,26時間の自発的な行動について手動で注釈を付けた。
我々は、人間の行動検出のための最先端のアプローチであるピラミッド拡張注意ネットワーク(PDAN)を適応する。
論文 参考訳(メタデータ) (2022-07-26T11:24:00Z) - Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis [32.31161268928372]
我々は,行動予測に異質なユーザ行動と社会的影響を取り入れることを目指している。
本稿では,行動シーケンスのコンテキストを考慮したLong-Short Term Memory (LSTM)を提案する。
残差学習に基づくデコーダは、社会的行動表現に基づいて、複数の高次クロス機能を自動的に構築するように設計されている。
論文 参考訳(メタデータ) (2022-07-24T17:05:37Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
本稿では,システムレベルの状態を全体像から直接予測するディープ・ネットワーク・モデルを提案する。
結果の予測モデルは、人間の理解した予測モデルに基づいていないため、説明モジュールを使用する。
これは、行動生態学における人工知能の例である。
論文 参考訳(メタデータ) (2021-08-20T22:50:41Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。