論文の概要: Online Learning Quantum States with the Logarithmic Loss via VB-FTRL
- arxiv url: http://arxiv.org/abs/2311.04237v2
- Date: Mon, 14 Oct 2024 06:44:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:05:38.631639
- Title: Online Learning Quantum States with the Logarithmic Loss via VB-FTRL
- Title(参考訳): VB-FTRLによる対数損失を伴うオンライン学習量子状態
- Authors: Wei-Fu Tseng, Kai-Chun Chen, Zi-Hong Xiao, Yen-Huan Li,
- Abstract要約: 対数損失を伴う量子状態のオンライン学習(LL-OLQS)は、30年以上にわたってオンライン学習において古典的なオープンな問題である。
本稿では,LL-OLQS に対する VB-FTRL を適度な計算量で一般化する。
それぞれのアルゴリズムは半定値プログラムで構成されており、例えば、切断平面法によって時間内に実装することができる。
- 参考スコア(独自算出の注目度): 1.8856444568755568
- License:
- Abstract: Online learning of quantum states with the logarithmic loss (LL-OLQS) is a quantum generalization of online portfolio selection (OPS), a classic open problem in online learning for over three decades. This problem also emerges in designing stochastic optimization algorithms for maximum-likelihood quantum state tomography. Recently, Jezequel et al. (arXiv:2209.13932) proposed the VB-FTRL algorithm, the first regret-optimal algorithm for OPS with moderate computational complexity. In this paper, we generalize VB-FTRL for LL-OLQS. Let $d$ denote the dimension and $T$ the number of rounds. The generalized algorithm achieves a regret rate of $O ( d^2 \log ( d + T ) )$ for LL-OLQS. Each iteration of the algorithm consists of solving a semidefinite program that can be implemented in polynomial time by, for example, cutting-plane methods. For comparison, the best-known regret rate for LL-OLQS is currently $O ( d^2 \log T )$, achieved by an exponential weight method. However, no explicit implementation is available for the exponential weight method for LL-OLQS. To facilitate the generalization, we introduce the notion of VB-convexity. VB-convexity is a sufficient condition for the volumetric barrier associated with any function to be convex and is of independent interest.
- Abstract(参考訳): 対数損失を伴う量子状態のオンライン学習(英: online learning of quantum state with the logarithmic loss、LL-OLQS)は、オンラインポートフォリオ選択(OPS)の量子一般化である。
この問題は、最大形量子状態トモグラフィーのための確率最適化アルゴリズムの設計にも現れる。
最近、Jezequel et al (arXiv:2209.13932) は、計算複雑性が適度なOPSに対する最初の後悔最適アルゴリズムである VB-FTRL アルゴリズムを提案した。
本稿では,LL-OLQSのVB-FTRLを一般化する。
d$ は次元を表し、$T$ はラウンドの数を表す。
一般化されたアルゴリズムはLL-OLQSに対して$O ( d^2 \log ( d + T ) )$の後悔率を達成する。
アルゴリズムの各イテレーションは、例えば切断平面法によって多項式時間で実装できる半定値プログラムを解くことで構成される。
比較すると、LL-OLQSの最もよく知られた後悔率は、指数重み法によるO(d^2 \log T )$である。
しかし、LL-OLQSの指数重み法に対する明示的な実装は存在しない。
一般化を容易にするために,VB-凸の概念を導入する。
VB-凸性(VB-convexity)は、任意の関数が凸となるような体積障壁に対して十分条件であり、独立した関心を持つ。
関連論文リスト
- A quantum-classical hybrid algorithm with Ising model for the learning with errors problem [13.06030390635216]
本稿では,Ising Model (HAWI) を用いた量子古典ハイブリッドアルゴリズムを提案し,LWE問題に対処する。
我々は、ハミルトンの低エネルギーレベルを同定して解を抽出し、現在のノイズの多い中間スケール量子(NISQ)デバイスの実装に適したものにする。
我々のアルゴリズムは反復であり、その時間複雑性はハミルトンの低エネルギーレベルを見つけるために使われる特定の量子アルゴリズムに依存する。
論文 参考訳(メタデータ) (2024-08-15T05:11:35Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Infrequent Resolving Algorithm for Online Linear Programming [3.247415064064425]
既存のオンライン線形プログラミング(OLP)アルゴリズムは、LPベースアルゴリズムとLPフリーアルゴリズムの2つのカテゴリに分類される。
本稿では,LPを時間的水平線上でのO(loglog T)$倍だけ解きながら,常に後悔するアルゴリズムを提案する。
我々のアルゴリズムは、LPの$O(loglog T)$ timesと$Oleft(T(1/2+epsilon)Mright)$ regretを、LPの$M$ timesを解くことで、絶え間ない後悔を保証できる。
論文 参考訳(メタデータ) (2024-08-01T11:09:01Z) - Quantum Algorithms for the Pathwise Lasso [1.8058773918890538]
古典的LARS(Least Angle Regression)パスワイズアルゴリズムに基づく新しい量子高次元線形回帰アルゴリズムを提案する。
我々の量子アルゴリズムは、ペナルティ項が変化するにつれて、完全な正規化パスを提供するが、特定の条件下では、イテレーション毎に2次的に高速である。
我々は、KKT条件の近似バージョンと双対性ギャップにより、LARSアルゴリズムがエラーに対して堅牢であることを証明した。
論文 参考訳(メタデータ) (2023-12-21T18:57:54Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
量子信号処理に基づくフィルタリング手法を用いて,アイデアダイアバティックな量子コンピューティングを組み合わせた量子線形解法アルゴリズムを提案する。
我々のプロトコルは、初期実装において、最先端技術に対する量子線形解決器のコストを桁違いに削減する。
論文 参考訳(メタデータ) (2023-05-19T00:07:32Z) - Provably Efficient Exploration in Quantum Reinforcement Learning with Logarithmic Worst-Case Regret [23.418957451727255]
量子強化学習(RL)のための新しいUCRL型アルゴリズムを提案する。
我々は$mathcalO(mathrmpoly(S, A, H, log T))$ the worst-case regret for it, where $T$ is the number of episodes。
具体的には、$d$次元線形表現を持つ線形混合MDPに対する値目標回帰(VTR)に基づく量子アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-02-21T16:23:11Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
我々は,損失関数が約1,300ドル以上のエピソードに対して任意に変化するような,敵対的決定過程(MDP)の学習を検討する。
本稿では,同じ設定で$tildemathcal O(K2/3)$に対する後悔を改善する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T14:37:21Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
量子計算のコヒーレント制御は、いくつかの量子プロトコルやアルゴリズムを改善するために使用できる。
我々は、量子光学にインスパイアされたコヒーレント制御のためのグラフィカル言語PBS計算を洗練する。
論文 参考訳(メタデータ) (2022-02-10T18:59:52Z) - AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization [159.75564904944707]
垂直連合学習(VFL)のための非同期準ニュートン(AsySQN)フレームワークを提案する。
提案アルゴリズムは、逆ヘッセン行列を明示的に計算することなく、近似して降下ステップをスケールする。
本稿では,非同期計算を採用することにより,計算資源の有効利用が期待できることを示す。
論文 参考訳(メタデータ) (2021-09-26T07:56:10Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。