論文の概要: A quantum-classical hybrid algorithm with Ising model for the learning with errors problem
- arxiv url: http://arxiv.org/abs/2408.07936v1
- Date: Thu, 15 Aug 2024 05:11:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:58:11.663891
- Title: A quantum-classical hybrid algorithm with Ising model for the learning with errors problem
- Title(参考訳): 誤り問題学習のためのIsingモデルを用いた量子古典ハイブリッドアルゴリズム
- Authors: Muxi Zheng, Jinfeng Zeng, Wentao Yang, Pei-Jie Chang, Bao Yan, Haoran Zhang, Min Wang, Shijie Wei, Gui-Lu Long,
- Abstract要約: 本稿では,Ising Model (HAWI) を用いた量子古典ハイブリッドアルゴリズムを提案し,LWE問題に対処する。
我々は、ハミルトンの低エネルギーレベルを同定して解を抽出し、現在のノイズの多い中間スケール量子(NISQ)デバイスの実装に適したものにする。
我々のアルゴリズムは反復であり、その時間複雑性はハミルトンの低エネルギーレベルを見つけるために使われる特定の量子アルゴリズムに依存する。
- 参考スコア(独自算出の注目度): 13.06030390635216
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Learning-With-Errors (LWE) problem is a crucial computational challenge with significant implications for post-quantum cryptography and computational learning theory. Here we propose a quantum-classical hybrid algorithm with Ising model (HAWI) to address the LWE problem. Our approach involves transforming the LWE problem into the Shortest Vector Problem (SVP), using variable qubits to encode lattice vectors into an Ising Hamiltonian. We then identify the low-energy levels of the Hamiltonian to extract the solution, making it suitable for implementation on current noisy intermediate-scale quantum (NISQ) devices. We prove that the number of qubits required is less than $m(3m-1)/2$, where $m$ is the number of samples in the algorithm. Our algorithm is heuristic, and its time complexity depends on the specific quantum algorithm employed to find the Hamiltonian's low-energy levels. If the Quantum Approximate Optimization Algorithm (QAOA) is used to solve the Ising Hamiltonian problem, and the number of iterations satisfies $y < O\left(m\log m\cdot 2^{0.2972k}/pk^2\right)$, our algorithm will outperform the classical Block Korkine-Zolotarev (BKZ) algorithm, where $k$ is the block size related to problem parameters, and $p$ is the number of layers in QAOA. We demonstrate the algorithm by solving a $2$-dimensional LWE problem on a real quantum device with $5$ qubits, showing its potential for solving meaningful instances of the LWE problem in the NISQ era.
- Abstract(参考訳): LWE問題(Learning-With-Errors)は、量子後暗号と計算学習理論に重要な意味を持つ重要な計算問題である。
本稿では,Ising Model (HAWI) を用いた量子古典ハイブリッドアルゴリズムを提案し,LWE問題に対処する。
我々のアプローチでは、LWE問題を最短ベクトル問題(SVP)に変換し、可変量子ビットを用いて格子ベクトルをイジング・ハミルトニアンにエンコードする。
次に、ハミルトニアンの低エネルギーレベルを特定して解を抽出し、現在のノイズの多い中間スケール量子(NISQ)デバイスの実装に適したものにする。
必要な量子ビットの数は$m(3m-1)/2$未満であり、$m$はアルゴリズムのサンプルの数である。
我々のアルゴリズムはヒューリスティックであり、その時間複雑性はハミルトンの低エネルギーレベルを見つけるために使われる特定の量子アルゴリズムに依存する。
もしQuantum Approximate Optimization Algorithm (QAOA) がイジング・ハミルトン問題の解法として使われ、反復回数が $y < O\left(m\log m\cdot 2^{0.2972k}/pk^2\right)$ を満たすなら、我々のアルゴリズムは古典的ブロック・コルキン・ゾロタレフ(BKZ)アルゴリズムよりも優れ、$k$ は問題パラメータに関連するブロックサイズであり、$p$ はQAOAのレイヤー数である。
NISQ時代のLWE問題の有意義な事例を解く可能性を示した上で,本アルゴリズムを実量子デバイス上で5ドルキュービットの2次元LWE問題を解くことで実演する。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Depth scaling of unstructured search via quantum approximate optimization [0.0]
変分量子アルゴリズムは、現在の量子計算のデファクトモデルとなっている。
そのような問題の1つは、ある文字列の特定のビットを見つけることで構成される非構造化探索である。
我々は、CTQWを用いてQAOA配列を復元し、最近のトロッター公式の理論の進歩を利用して、クエリの複雑さを束縛する。
論文 参考訳(メタデータ) (2024-03-22T18:00:03Z) - Two quantum algorithms for solving the one-dimensional
advection-diffusion equation [0.0]
2つの量子アルゴリズムが周期的境界条件を持つ線形一次元対流拡散方程式の数値解に対して提示される。
量子ビット数の増加に伴う精度と性能を、ポイントごとに比較する。
論文 参考訳(メタデータ) (2023-12-30T21:23:15Z) - Quantum Algorithms for the Pathwise Lasso [1.8058773918890538]
古典的LARS(Least Angle Regression)パスワイズアルゴリズムに基づく新しい量子高次元線形回帰アルゴリズムを提案する。
我々の量子アルゴリズムは、ペナルティ項が変化するにつれて、完全な正規化パスを提供するが、特定の条件下では、イテレーション毎に2次的に高速である。
我々は、KKT条件の近似バージョンと双対性ギャップにより、LARSアルゴリズムがエラーに対して堅牢であることを証明した。
論文 参考訳(メタデータ) (2023-12-21T18:57:54Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
ランダム化および最適化されたQAOA回路による絡み合いの増大と広がりについて検討する。
また、ランダム行列理論に関連する絡み合いスペクトルについても検討する。
論文 参考訳(メタデータ) (2022-06-14T17:37:44Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Discriminating Quantum States with Quantum Machine Learning [0.0]
我々は,量子k平均(qk平均)アルゴリズムを低時間複雑に提案し,実装し,解析する。
量子状態の識別は、低レベルのインフェーズと二次信号(IQ)データから量子状態の識別を可能にする。
従来のコンピュータへの依存を減らすため、IBMQ Bogotaデバイス上でqk-meansを用いて状態判別を行う。
論文 参考訳(メタデータ) (2021-12-01T07:09:14Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。