論文の概要: GCS-ICHNet: Assessment of Intracerebral Hemorrhage Prognosis using
Self-Attention with Domain Knowledge Integration
- arxiv url: http://arxiv.org/abs/2311.04772v1
- Date: Wed, 8 Nov 2023 15:51:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 15:24:46.885221
- Title: GCS-ICHNet: Assessment of Intracerebral Hemorrhage Prognosis using
Self-Attention with Domain Knowledge Integration
- Title(参考訳): gcs-ichnet : ドメイン知識統合型セルフアテンションによる脳内出血予後の評価
- Authors: Xuhao Shan, Xinyang Li, Ruiquan Ge, Shibin Wu, Ahmed Elazab, Jichao
Zhu, Lingyan Zhang, Gangyong Jia, Qingying Xiao, Xiang Wan, Changmiao Wang
- Abstract要約: 脳内出血 (ICH) は脳血管破裂による重篤な病態である。
本稿では,マルチモーダル脳CTデータとGlasgow Coma Scaleスコアを統合した新しいディープラーニングアルゴリズムGCS-ICHNetを提案する。
- 参考スコア(独自算出の注目度): 19.51978172091416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intracerebral Hemorrhage (ICH) is a severe condition resulting from damaged
brain blood vessel ruptures, often leading to complications and fatalities.
Timely and accurate prognosis and management are essential due to its high
mortality rate. However, conventional methods heavily rely on subjective
clinician expertise, which can lead to inaccurate diagnoses and delays in
treatment. Artificial intelligence (AI) models have been explored to assist
clinicians, but many prior studies focused on model modification without
considering domain knowledge. This paper introduces a novel deep learning
algorithm, GCS-ICHNet, which integrates multimodal brain CT image data and the
Glasgow Coma Scale (GCS) score to improve ICH prognosis. The algorithm utilizes
a transformer-based fusion module for assessment. GCS-ICHNet demonstrates high
sensitivity 81.03% and specificity 91.59%, outperforming average clinicians and
other state-of-the-art methods.
- Abstract(参考訳): 脳内出血 (intracerebral hemorrhage, ich) は脳血管の損傷による重篤な疾患であり、合併症や死亡に至ることが多い。
死亡率が高いため、タイムリーで正確な予後と管理が不可欠である。
しかし、従来の方法は主観的な臨床専門知識に大きく依存しており、不正確な診断や治療の遅れにつながる可能性がある。
人工知能(AI)モデルは臨床医を支援するために研究されてきたが、多くの先行研究はドメイン知識を考慮せずにモデル修正に焦点を当てていた。
本稿では,マルチモーダル脳ct画像データとglasgow coma scale(gcs)スコアを統合し,ict予後を改善する新しいディープラーニングアルゴリズムgcs-ichnetを提案する。
このアルゴリズムは、トランスフォーマーベースの融合モジュールを用いて評価を行う。
gcs-ichnetは、感度81.03%と特異性91.59%を示し、平均的な臨床医や他の最先端の方法よりも優れている。
関連論文リスト
- An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling [9.108675519106319]
脊椎圧迫骨折(VCFs)は骨粗しょう症の一般的な原因であり、潜在的に重篤な結果である。
機会論的診断のような高度なシナリオでは、モデル解釈可能性がAIレコメンデーションの採用の鍵となる。
我々はCTボリュームにおけるVCF検出のためのニューロシンボリックアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-23T04:01:44Z) - Advanced AI Framework for Enhanced Detection and Assessment of Abdominal Trauma: Integrating 3D Segmentation with 2D CNN and RNN Models [5.817643726988823]
本研究は, 腹部外傷診断の高速化と精度向上を目的として, 人工知能(AI)と機械学習(ML)の応用について検討した。
我々は、診断性能を向上させるために、3Dセグメント化、2D畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を組み合わせた高度なAIモデルを開発した。
本モデルでは腹部CTでリアルタイム, 正確な評価を行い, 臨床診断と患者成績の改善を図る。
論文 参考訳(メタデータ) (2024-07-23T04:18:34Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
近年の乳房画像解析のためのニューラルネットワークモデルの出現は、コンピュータ支援診断における画期的な進歩である。
本研究は,CESMリコンビネート画像に対する深層学習に基づくコンピュータ支援診断開発を提案し,病変の検出と症例の分類を行う。
論文 参考訳(メタデータ) (2022-07-20T06:49:02Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients [31.567542945171834]
脳腫瘍シーケンス登録(BraTS-Reg)の課題について述べる。
BraTS-Regは、変形可能な登録アルゴリズムのための最初の公開ベンチマーク環境である。
BraTS-Regの目的は、引き続き研究の活発な資源として機能することである。
論文 参考訳(メタデータ) (2021-12-13T19:25:16Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
本稿では,その出力の確実性を推定するために,最先端自動品質制御(QC)手法の解析を行う。
磁気共鳴画像データにおける白色物質の超強度(WMH)を識別する脳画像分割タスクにおける最も有望なアプローチを検証した。
論文 参考訳(メタデータ) (2021-12-06T16:30:43Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - OncoPetNet: A Deep Learning based AI system for mitotic figure counting
on H&E stained whole slide digital images in a large veterinary diagnostic
lab setting [47.38796928990688]
OncoPetNetの開発において,複数の最先端ディープラーニング技術を用いて病理組織像分類と有糸体像検出を行った。
提案システムは,14種類の癌に対して,ヒトのエキスパートベースラインと比較して,41例の有糸分裂計数性能を有意に向上させた。
デプロイでは、2つのセンターで1日3,323枚のデジタル全スライド画像を処理する高スループット獣医診断サービスにおいて、効果的な0.27分/スライダー推論が達成された。
論文 参考訳(メタデータ) (2021-08-17T20:01:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。