論文の概要: On the Multiple Roles of Ontologies in Explainable AI
- arxiv url: http://arxiv.org/abs/2311.04778v1
- Date: Wed, 8 Nov 2023 15:57:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 15:25:38.655266
- Title: On the Multiple Roles of Ontologies in Explainable AI
- Title(参考訳): 説明可能なAIにおけるオントロジーの役割について
- Authors: Roberto Confalonieri and Giancarlo Guizzardi
- Abstract要約: 本稿では、明示的な知識、特に説明可能なAIで果たすことができるさまざまな役割について論じる。
本稿では、参照モデリング、常識推論、知識の洗練と複雑性管理の3つの主要な視点について考察する。
- 参考スコア(独自算出の注目度): 0.32634122554913997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses the different roles that explicit knowledge, in
particular ontologies, can play in Explainable AI and in the development of
human-centric explainable systems and intelligible explanations. We consider
three main perspectives in which ontologies can contribute significantly,
namely reference modelling, common-sense reasoning, and knowledge refinement
and complexity management. We overview some of the existing approaches in the
literature, and we position them according to these three proposed
perspectives. The paper concludes by discussing what challenges still need to
be addressed to enable ontology-based approaches to explanation and to evaluate
their human-understandability and effectiveness.
- Abstract(参考訳): 本稿では、明示的な知識、特にオントロジーが、説明可能なAIや、人間中心の説明可能なシステムや理解可能な説明の開発に果たす役割について論じる。
我々は,参照モデリング,常識推論,知識の洗練と複雑性管理という,オントロジーが著しく貢献できる3つの主要な視点を考察する。
文献における既存のアプローチのいくつかを概観し,これら3つの視点に基づいて位置づける。
この論文は、オントロジーに基づく説明と人間の理解可能性と有効性を評価するために、まだ解決すべき課題について論じる。
関連論文リスト
- A Mechanistic Explanatory Strategy for XAI [0.0]
本稿では,ディープラーニングシステムの機能的構造を説明するためのメカニズム的戦略を概説する。
メカニスティックアプローチによると、不透明なAIシステムの説明には、意思決定を促進するメカニズムの特定が含まれる。
この研究は、モデル組織を研究するための体系的なアプローチが、より単純な(あるいはより控えめな)説明可能性技術が欠落する可能性のある要素を明らかにすることを示唆している。
論文 参考訳(メタデータ) (2024-11-02T18:30:32Z) - Reasoning with Natural Language Explanations [15.281385727331473]
説明は人間の合理性の根幹をなす特徴であり、学習と一般化を支えている。
自然言語推論(NLI)の研究は、学習や推論において説明が果たす役割を再考し始めている。
論文 参考訳(メタデータ) (2024-10-05T13:15:24Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
推論は、交渉、医療診断、刑事捜査など、様々な現実世界の環境において重要な役割を担っている。
本稿では,推論に適応する基礎モデルを提案する。
次に、基礎モデルにおける推論能力の出現の背後にある潜在的な将来方向を掘り下げる。
論文 参考訳(メタデータ) (2023-12-17T15:16:13Z) - Mind the Gap! Bridging Explainable Artificial Intelligence and Human Understanding with Luhmann's Functional Theory of Communication [5.742215677251865]
我々は、説明可能な人工知能の課題を強調するために、社会システム理論を適用した。
我々は,インタラクティブかつ反復的な説明者の方向性で技術研究を再活性化することを目的としている。
論文 参考訳(メタデータ) (2023-02-07T13:31:02Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
人工知能(AI)システムのロバスト性はいまだ解明されておらず、大規模な採用を妨げる重要な問題となっている。
本稿では,基本的・応用的両面から文献を整理・記述する3つの概念を紹介する。
我々は、人間が提供できる必要な知識を考慮して、AIの堅牢性を評価し、向上する上で、人間の中心的な役割を強調します。
論文 参考訳(メタデータ) (2022-10-17T10:00:51Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
医師、医療専門家、政策立案者に対して、説明を求めるニーズと欲求について尋ねる。
本研究は, 自然言語対話の形での対話的説明を, 意思決定者が強く好むことを示唆する。
これらのニーズを考慮して、インタラクティブな説明を設計する際に、研究者が従うべき5つの原則を概説する。
論文 参考訳(メタデータ) (2022-02-03T22:17:21Z) - Scientia Potentia Est -- On the Role of Knowledge in Computational
Argumentation [52.903665881174845]
本稿では,計算議論に必要な知識のピラミッドを提案する。
この分野におけるこれらのタイプの役割と統合について,その技術の現状を簡潔に論じる。
論文 参考訳(メタデータ) (2021-07-01T08:12:41Z) - Reasons, Values, Stakeholders: A Philosophical Framework for Explainable
Artificial Intelligence [0.0]
本稿では,この議論に概念的正確性をもたらす多面的フレームワークを提案する。
人工知能の予測に最も関係している説明の種類を特定します。
また、これらの説明の評価のための社会的および倫理的価値の関連性と重要性を認識しています。
論文 参考訳(メタデータ) (2021-03-01T04:50:31Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。