RAGLog: Log Anomaly Detection using Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2311.05261v1
- Date: Thu, 9 Nov 2023 10:40:04 GMT
- Title: RAGLog: Log Anomaly Detection using Retrieval Augmented Generation
- Authors: Jonathan Pan, Swee Liang Wong, Yidi Yuan,
- Abstract summary: We explore the use of a Retrieval Augmented Large Language Model that leverages a vector database to detect anomalies from logs.
To the best of our knowledge, our experiment which we called RAGLog is a novel one and the experimental results show much promise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ability to detect log anomalies from system logs is a vital activity needed to ensure cyber resiliency of systems. It is applied for fault identification or facilitate cyber investigation and digital forensics. However, as logs belonging to different systems and components differ significantly, the challenge to perform such analysis is humanly challenging from the volume, variety and velocity of logs. This is further complicated by the lack or unavailability of anomalous log entries to develop trained machine learning or artificial intelligence models for such purposes. In this research work, we explore the use of a Retrieval Augmented Large Language Model that leverages a vector database to detect anomalies from logs. We used a Question and Answer configuration pipeline. To the best of our knowledge, our experiment which we called RAGLog is a novel one and the experimental results show much promise.
Related papers
- Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction [1.474723404975345]
High cost of manual annotation and dynamic nature of usage scenarios present major challenges to effective log analysis.
This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios.
We also introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor.
arXiv Detail & Related papers (2024-09-18T11:35:58Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - RAPID: Training-free Retrieval-based Log Anomaly Detection with PLM
considering Token-level information [7.861095039299132]
The need for log anomaly detection is growing, especially in real-world applications.
Traditional deep learning-based anomaly detection models require dataset-specific training, leading to corresponding delays.
We introduce RAPID, a model that capitalizes on the inherent features of log data to enable anomaly detection without training delays.
arXiv Detail & Related papers (2023-11-09T06:11:44Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
We propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue.
We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection.
arXiv Detail & Related papers (2022-09-16T11:51:58Z) - Leveraging Log Instructions in Log-based Anomaly Detection [0.5949779668853554]
We propose a method for reliable and practical anomaly detection from system logs.
It overcomes the common disadvantage of related works by building an anomaly detection model with log instructions from the source code of 1000+ GitHub projects.
The proposed method, named ADLILog, combines the log instructions and the data from the system of interest (target system) to learn a deep neural network model.
arXiv Detail & Related papers (2022-07-07T10:22:10Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
We propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing.
Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages.
Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.
arXiv Detail & Related papers (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.