論文の概要: Generalization in medical AI: a perspective on developing scalable models
- arxiv url: http://arxiv.org/abs/2311.05418v2
- Date: Wed, 16 Apr 2025 07:07:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:37:05.266721
- Title: Generalization in medical AI: a perspective on developing scalable models
- Title(参考訳): 医療用AIの一般化 : スケーラブルなモデル開発をめざして
- Authors: Eran Zvuloni, Leo Anthony Celi, Joachim A. Behar,
- Abstract要約: 医療用AIモデルの配布外一般化性能を特徴付ける3段階尺度が導入された。
このスケールは、現実世界の医療シナリオの多様性と、対象のドメインデータとラベルがモデル再分類に利用できるかどうかに対処する。
- 参考スコア(独自算出の注目度): 2.6728181032975598
- License:
- Abstract: The scientific community is increasingly recognizing the importance of generalization in medical AI for translating research into practical clinical applications. A three-level scale is introduced to characterize out-of-distribution generalization performance of medical AI models. This scale addresses the diversity of real-world medical scenarios as well as whether target domain data and labels are available for model recalibration. It serves as a tool to help researchers characterize their development settings and determine the best approach to tackling the challenge of out-of-distribution generalization.
- Abstract(参考訳): 科学コミュニティは、研究を実践的な臨床応用に翻訳するために医療AIの一般化の重要性をますます認識している。
医療用AIモデルの配布外一般化性能を特徴付ける3段階尺度が導入された。
このスケールは、現実世界の医療シナリオの多様性と、対象のドメインデータとラベルがモデル再分類に利用できるかどうかに対処する。
研究者が開発環境を特徴づけ、アウト・オブ・ディストリビューションの一般化の課題に取り組むための最良のアプローチを決定するのに役立つツールとして機能する。
関連論文リスト
- The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
論文 参考訳(メタデータ) (2024-09-03T00:48:50Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
トレーニングとテストデータのドメインシフトは、一般的なディープラーニングモデルをトレーニングする上で大きな課題となる。
医用画像領域に事前訓練されたモデルとしてモデル目的関数を再確立するDG法を提案する。
提案手法は,従来の最先端技術よりも平均精度5.25%,標準偏差が低い。
論文 参考訳(メタデータ) (2023-09-18T11:17:13Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
実世界のシナリオでは、トレーニング中に露出していない新しいドメインや異なるドメインのデータに遭遇することが一般的である。
ドメイン一般化(Domain Generalization, DG)は、モデルがこれまで見つからなかったドメインからのデータを扱うことを可能にする、有望な方向である。
本稿では,敵対的トレーニングを活用して無限のスタイルでトレーニングデータを生成する,AdverIN(Adversarial Intensity Attack)と呼ばれる新しいDG手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T19:40:51Z) - Domain Adaptation and Generalization on Functional Medical Images: A
Systematic Survey [2.990508892017587]
機械学習アルゴリズムは、自然言語処理、コンピュータビジョン、信号処理、医療データ処理など、さまざまな分野に革命をもたらした。
機械学習アルゴリズムの優れた能力にもかかわらず、これらのモデルの性能は主に、テストやトレーニングデータ分布の変化によって低下する。
本稿では,機能的脳信号に対するドメイン一般化(DG)とドメイン適応(DA)の体系的レビューを行う。
論文 参考訳(メタデータ) (2022-12-04T21:52:38Z) - When Neural Networks Fail to Generalize? A Model Sensitivity Perspective [82.36758565781153]
ドメイン一般化 (Domain Generalization, DG) は、異なる分布の下で見えないドメインでうまく機能するようにモデルを訓練することを目的としている。
本稿では,より現実的で,より困難なシナリオである単一領域一般化(Single-DG)について考察する。
我々は「モデル感度」と命名する一般化と強く相関するモデルの性質を経験的に確認する。
本稿では、高感度の周波数をターゲットとした拡張画像を生成するために、スペクトル逆データ拡張(SADA)の新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-12-01T20:15:15Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Real-World Multi-Domain Data Applications for Generalizations to
Clinical Settings [1.508558791031741]
ディープラーニングモデルは、臨床試験のような人工的な設定から標準化されたデータセットでトレーニングされた場合、うまく機能する。
マルチドメイン実世界のデータセットに転送学習を用いた自己教師型アプローチを用いることで、標準化されたデータセットに対して16%の相対的改善が達成できることを示す。
論文 参考訳(メタデータ) (2020-07-24T17:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。