Quantum sensitivity analysis: a general framework for controlling quantum fluctuations
- URL: http://arxiv.org/abs/2311.05535v3
- Date: Thu, 21 Mar 2024 10:08:18 GMT
- Title: Quantum sensitivity analysis: a general framework for controlling quantum fluctuations
- Authors: Shiekh Zia Uddin, Nicholas Rivera, Devin Seyler, Yannick Salamin, Jamison Sloan, Charles Roques-Carmes, Shutao Xu, Michelle Sander, Marin Soljacic,
- Abstract summary: We introduce a general new theory which allows us to predict quantum effects in any nonlinear system purely in terms of its classical description.
We demonstrate the predictions of our theory in experiments probing quantum fluctuations of intense femtosecond pulses propagating in an optical fiber.
- Score: 1.4130869932877583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear systems are important in many areas of modern science and technology. For example, nonlinearity plays an essential role in generating quantum mechanical states of both light and matter. As a result, there has been great interest in understanding the fundamental quantum nature of a variety of nonlinear effects. At the same time, there is currently a large gap between the classical and quantum understanding of nonlinear systems, with the classical understanding being far more developed. To close this gap, we introduce a general new theory which allows us to predict quantum effects in any nonlinear system purely in terms of its classical description. We demonstrate the predictions of our theory in experiments probing quantum fluctuations of intense femtosecond pulses propagating in an optical fiber undergoing soliton-fission supercontinuum generation, a process where broadband radiation is produced by a narrow-band input. Famously, this process is known to be highly noise-sensitive, leading to noisy outputs even from inputs with only quantum fluctuations. In contrast, our experiments uncovered a variety of previously hidden low-noise and noise-robust states arising from quantum correlations and entanglement, in agreement with the predictions of our theory. We also show how the theory points to new design concepts for controlling quantum noise in optics and beyond. We expect that our results will provide a template for discovering quantum effects in a wide variety of complex nonlinear systems.
Related papers
- Noise immunity in quantum optical systems through non-Hermitian topology [0.0]
We show that non-reciprocity can enable the unidirectional flow of noise from the non-equilibrium steady states of nonlinear driven-dissipative systems.
We demonstrate that this unidirectional flow results from the non-Hermitian skin effect (NHSE) for quantum noise.
arXiv Detail & Related papers (2025-03-14T17:40:54Z) - Observation of anomalous classical-to-quantum transitions in many-body systems [0.0]
We report on the experimental observation of anomalous classical-to-quantum transitions in open many-body optical systems.
Our work can have important implications for other fields of physics ranging from condensed matter to nuclear physics.
arXiv Detail & Related papers (2024-08-13T00:10:09Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.
Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Quantum physics cannot be captured by classical linear hidden variable
theories even in the absence of entanglement [0.0]
We study the quantum trajectories of a single qubit that experiences a sequence of generalised measurements.
We conclude that quantum physics cannot be replaced by linear hidden variable theories.
arXiv Detail & Related papers (2023-10-20T21:06:15Z) - Noise-induced dynamics and photon statistics in bimodal quantum-dot
micropillar lasers [1.163831901191081]
Emission characteristics of quantum-dotnic lasers (QDMLs) are located at the intersection of nanophotonics and nonlinear dynamics.
Noise-induced bimodal QDML with dual-mode outputs is modeled and investigated.
arXiv Detail & Related papers (2023-06-11T01:41:25Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Strong broadband intensity noise squeezing from near-infrared to terahertz frequencies in semiconductor lasers with nonlinear dissipation [1.8865372809555165]
We show how semiconductor lasers with sharp intensity-dependent dissipation can support highly broadband intensity noise squeezing from infrared to terahertz wavelengths.
Our protocol realizes strongly intensity noise-squeezed intracavity quantum states, which could create a new regime for cavity quantum electrodynamics experiments.
The existence of these multiple functionalities in both the classical and quantum mechanical domains in a single semiconductor laser platform, could enable advances in on-chip quantum optical communication, computing, and sensing across the electromagnetic spectrum.
arXiv Detail & Related papers (2022-12-14T16:03:52Z) - Sensitivity of quantum gate fidelity to laser phase and intensity noise [0.0]
We quantify the sensitivity of quantum gate fidelities to laser phase and intensity noise.
Our results establish requirements on laser noise levels needed to achieve desired gate fidelities.
arXiv Detail & Related papers (2022-10-20T04:23:15Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Multiphoton Quantum van Cittert-Zernike Theorem [0.0]
We introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems.
We show that conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit.
arXiv Detail & Related papers (2022-02-15T01:14:49Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Driven Gaussian quantum walks [0.0]
Quantum walks function as essential means to implement quantum simulators.
We introduce the notion of a driven Gaussian quantum walk.
We study the generation and boost of highly multimode entanglement, squeezing, and other quantum effects.
arXiv Detail & Related papers (2021-12-16T15:53:42Z) - A Causal Framework for Non-Linear Quantum Mechanics [0.0]
We show that the resulting low-energy theory, non-linear quantum mechanics, is causal, preserves probability and permits a consistent description of the process of measurement.
We show that non-linear quantum effects can be observed in macroscopic systems even in the presence of de-coherence.
Non-linear quantum mechanics also enables novel gravitational phenomena and may open new directions to solve the black hole information problem.
arXiv Detail & Related papers (2021-06-19T21:52:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Achieving ultimate noise tolerance in quantum communication [0.0]
We propose and experimentally demonstrate a platform for quantum communication based on ultrafast optical techniques.
By experimentally realizing a 1-ps optically induced temporal gate, we show that ultrafast time filtering can result in an improvement in noise tolerance by a factor of up to 1200.
arXiv Detail & Related papers (2021-02-09T19:55:14Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.