論文の概要: Towards End-to-End Spoken Grammatical Error Correction
- arxiv url: http://arxiv.org/abs/2311.05550v2
- Date: Fri, 19 Jul 2024 11:32:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 00:16:29.817490
- Title: Towards End-to-End Spoken Grammatical Error Correction
- Title(参考訳): 終端から終端への文法的誤り訂正に向けて
- Authors: Stefano Bannò, Rao Ma, Mengjie Qian, Kate M. Knill, Mark J. F. Gales,
- Abstract要約: Spoken grammatical error correct (GEC) は,L2学習者に対して,発話時の文法使用に対するフィードバックの提供を目的としている。
本稿では,音声認識基盤モデルであるWhisperを利用して,音声GECに対する「エンドツーエンド」アプローチを提案する。
- 参考スコア(独自算出の注目度): 33.116296120680296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grammatical feedback is crucial for L2 learners, teachers, and testers. Spoken grammatical error correction (GEC) aims to supply feedback to L2 learners on their use of grammar when speaking. This process usually relies on a cascaded pipeline comprising an ASR system, disfluency removal, and GEC, with the associated concern of propagating errors between these individual modules. In this paper, we introduce an alternative "end-to-end" approach to spoken GEC, exploiting a speech recognition foundation model, Whisper. This foundation model can be used to replace the whole framework or part of it, e.g., ASR and disfluency removal. These end-to-end approaches are compared to more standard cascaded approaches on the data obtained from a free-speaking spoken language assessment test, Linguaskill. Results demonstrate that end-to-end spoken GEC is possible within this architecture, but the lack of available data limits current performance compared to a system using large quantities of text-based GEC data. Conversely, end-to-end disfluency detection and removal, which is easier for the attention-based Whisper to learn, does outperform cascaded approaches. Additionally, the paper discusses the challenges of providing feedback to candidates when using end-to-end systems for spoken GEC.
- Abstract(参考訳): 文法的なフィードバックはL2学習者、教師、テスターにとって不可欠です。
Spoken grammatical error correct (GEC) は,L2学習者に対して,発話時の文法使用に対するフィードバックの提供を目的としている。
このプロセスは通常、ASRシステム、拡散除去、GECで構成されるカスケードパイプラインに依存しており、これら個々のモジュール間のエラーの伝播に関する懸念がある。
本稿では,音声認識基盤モデルであるWhisperを利用して,音声GECに対する「エンドツーエンド」アプローチを提案する。
このファンデーションモデルは、フレームワーク全体またはその一部を置き換えるために、例えば、ASR、ディスフルエンシ除去に使用することができる。
これらのエンド・ツー・エンドのアプローチは、Linguaskillというフリースポーク言語アセスメントテストから得られたデータに対して、より標準的なカスケードアプローチと比較される。
このアーキテクチャでは,エンド・ツー・エンドのGECが実現可能であることを示すが,利用可能なデータ不足は,大量のテキストベースのGECデータを用いたシステムと比較して,現在の性能を制限している。
逆に、注目ベースのWhisperが学習しやすいエンドツーエンドのディフルエンシ検出と削除は、カスケードアプローチよりも優れている。
さらに,音声GECのエンド・ツー・エンドシステムにおいて,候補に対してフィードバックを提供することの課題についても論じる。
関連論文リスト
- Grammatical Error Feedback: An Implicit Evaluation Approach [32.98100553225724]
文法的フィードバックは第二言語(L2)学習の統合に不可欠である。
コンピュータ支援言語学習におけるほとんどの研究は、文法的誤り訂正(GEC)システムによるフィードバックに焦点を当てている。
本稿では, ケンブリッジ大学コーパス・ラーナーのエッセイを用いて, GEC によるフィードバック生成の質と必要性, およびフィードバック生成システムについて検討する。
論文 参考訳(メタデータ) (2024-08-18T18:31:55Z) - Towards interfacing large language models with ASR systems using confidence measures and prompting [54.39667883394458]
本研究では,大言語モデル(LLM)を用いたASRテキストのポストホック修正について検討する。
精度の高い転写文に誤りを導入することを避けるため,信頼度に基づくフィルタリング手法を提案する。
その結果,競争力の低いASRシステムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-07-31T08:00:41Z) - Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding [1.07288078404291]
音声認識(ASR)に基づく自然言語理解手法を提案する。
ASRエラーによる書き起こしの不整合を処理するため,ノイズチャネルモデルの改良を行った。
4つのベンチマークデータセットの実験は、Contrastive and Consistency Learning (CCL)が既存のメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2024-05-23T23:10:23Z) - Grammatical Error Correction for Code-Switched Sentences by Learners of English [5.653145656597412]
CSWテキスト上で文法誤り訂正システムの利用を初めて検討する。
我々は、既存のGECコーパス内で異なるテキストのスパンを翻訳することで、合成されたCSW GECデータセットを生成する。
次に,CSW比,スイッチポイント係数,言語制約に基づいて,これらのスパンを選択する方法について検討する。
我々の最良のモデルは、モノリンガルデータセット上でのモデルの性能に影響を与えることなく、3つのCSWテストセットの平均1.57ドルF_0.5$を達成する。
論文 参考訳(メタデータ) (2024-04-18T20:05:30Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
ASRの誤り訂正に外部の大規模言語モデル(LLM)を利用する最初のオープンソースベンチマークを導入する。
提案したベンチマークには、334,000組以上のN-best仮説を含む新しいデータセットHyPoradise (HP)が含まれている。
合理的なプロンプトと生成能力を持つLLMは、N-bestリストに欠けているトークンを修正できる。
論文 参考訳(メタデータ) (2023-09-27T14:44:10Z) - Adversarial Training For Low-Resource Disfluency Correction [50.51901599433536]
ディフルエンシ補正(DC)のための逆学習型シーケンスタグ付けモデルを提案する。
提案手法の利点は,3つのインド語でDCに対して評価することで,合成された非流動データに大きく依存することを示す。
また,本手法は,音声障害によって導入されたASR文字の破面的不一致の除去にも有効である。
論文 参考訳(メタデータ) (2023-06-10T08:58:53Z) - A Unified Strategy for Multilingual Grammatical Error Correction with
Pre-trained Cross-Lingual Language Model [100.67378875773495]
本稿では,多言語文法的誤り訂正のための汎用的かつ言語に依存しない戦略を提案する。
我々の手法は言語固有の操作を使わずに多様な並列GECデータを生成する。
NLPCC 2018 Task 2のデータセット(中国語)で最先端の結果を達成し、Falko-Merlin(ドイツ語)とRULEC-GEC(ロシア語)の競合性能を得る。
論文 参考訳(メタデータ) (2022-01-26T02:10:32Z) - ErAConD : Error Annotated Conversational Dialog Dataset for Grammatical
Error Correction [30.917993017459615]
本稿では,オープンドメイン会話から抽出した新しい並列文法誤り訂正データセットを提案する。
このデータセットは、私たちの知る限り、会話の設定をターゲットにした最初のECCデータセットです。
データセットの有用性を実証するために、アノテーション付きデータを用いて最先端のECCモデルを微調整する。
論文 参考訳(メタデータ) (2021-12-15T20:27:40Z) - A Syntax-Guided Grammatical Error Correction Model with Dependency Tree
Correction [83.14159143179269]
文法的誤り訂正(英: Grammatical Error Correction, GEC)は、文中の文法的誤りを検出し、訂正するタスクである。
本稿では,依存木の構文知識を利用するためのグラフアテンション機構を採用した構文誘導型GECモデル(SG-GEC)を提案する。
我々は、GECタスクの公開ベンチマークでモデルを評価し、競争結果を得る。
論文 参考訳(メタデータ) (2021-11-05T07:07:48Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
既存の文法的誤り訂正(GEC)のアプローチは、手動で作成したGECデータセットによる教師あり学習に依存している。
誤りが不適切に編集されたり、修正されなかったりする「ノイズ」は無視できないほどある。
本稿では,既存のモデルの予測整合性を利用して,これらのデータセットをデノマイズする自己補充手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T04:45:09Z) - End-to-End Speech Recognition and Disfluency Removal [15.910282983166024]
本稿では,エンド・ツー・エンド音声認識とディフルエンシ除去の課題について検討する。
エンド・ツー・エンドのモデルでは、フロート・トランスクリプトを直接生成できることが示されている。
統合型ASRモデルと非フルエンシモデルの評価に使用できる2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2020-09-22T03:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。