論文の概要: High-Performance Transformers for Table Structure Recognition Need Early
Convolutions
- arxiv url: http://arxiv.org/abs/2311.05565v1
- Date: Thu, 9 Nov 2023 18:20:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 14:14:31.236606
- Title: High-Performance Transformers for Table Structure Recognition Need Early
Convolutions
- Title(参考訳): 早期畳み込みを必要とするテーブル構造認識用高性能トランス
- Authors: ShengYun Peng, Seongmin Lee, Xiaojing Wang, Rajarajeswari
Balasubramaniyan, Duen Horng Chau
- Abstract要約: 既存のアプローチでは、ビジュアルエンコーダには古典的畳み込みニューラルネットワーク(CNN)、テキストデコーダにはトランスフォーマーが使用されている。
表現力を犠牲にすることなくテーブル構造認識(TSR)のための軽量ビジュアルエンコーダを設計する。
畳み込みステムは従来のCNNバックボーンのパフォーマンスとより単純なモデルで一致できることが判明した。
- 参考スコア(独自算出の注目度): 25.04573593082671
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Table structure recognition (TSR) aims to convert tabular images into a
machine-readable format, where a visual encoder extracts image features and a
textual decoder generates table-representing tokens. Existing approaches use
classic convolutional neural network (CNN) backbones for the visual encoder and
transformers for the textual decoder. However, this hybrid CNN-Transformer
architecture introduces a complex visual encoder that accounts for nearly half
of the total model parameters, markedly reduces both training and inference
speed, and hinders the potential for self-supervised learning in TSR. In this
work, we design a lightweight visual encoder for TSR without sacrificing
expressive power. We discover that a convolutional stem can match classic CNN
backbone performance, with a much simpler model. The convolutional stem strikes
an optimal balance between two crucial factors for high-performance TSR: a
higher receptive field (RF) ratio and a longer sequence length. This allows it
to "see" an appropriate portion of the table and "store" the complex table
structure within sufficient context length for the subsequent transformer. We
conducted reproducible ablation studies and open-sourced our code at
https://github.com/poloclub/tsr-convstem to enhance transparency, inspire
innovations, and facilitate fair comparisons in our domain as tables are a
promising modality for representation learning.
- Abstract(参考訳): 表構造認識(TSR)は、表形式の画像を機械可読フォーマットに変換し、視覚エンコーダが画像の特徴を抽出し、テキストデコーダがテーブル表現トークンを生成する。
既存のアプローチでは、従来の畳み込みニューラルネットワーク(cnn)バックボーンを視覚エンコーダに、トランスフォーマーをテキストデコーダに使用する。
しかし、このハイブリッドCNN-Transformerアーキテクチャは、モデルパラメータのほぼ半分を占める複雑なビジュアルエンコーダを導入し、トレーニングと推論速度の両方を著しく削減し、TSRにおける自己教師型学習の可能性を妨げている。
本研究では,表現力を犠牲にすることなく,tsr用の軽量ビジュアルエンコーダを設計する。
畳み込みステムは従来のCNNバックボーンのパフォーマンスとより単純なモデルで一致できることが判明した。
コンボリューションステムは、高い受容野(RF)比と長いシーケンス長という、高性能TSRの2つの重要な要因の最適なバランスをとる。
これにより、テーブルの適切な部分を"見る"ことができ、複雑なテーブル構造を、その後のトランスフォーマーの十分なコンテキスト長内に"保存"することができる。
再現性のあるアブレーション研究を行い、透明性を高め、イノベーションを刺激し、テーブルとしての私たちの領域における公正な比較を促進するために、https://github.com/poloclub/tsr-convstemでコードをオープンソース化しました。
関連論文リスト
- DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
本稿では、畳み込みニューラルネットワーク(CNN)の特徴抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化を通じてトランスフォーマー入力に適合する。
論文 参考訳(メタデータ) (2024-07-18T22:15:35Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
テーブル構造認識変換器のための自己教師付き事前学習(SSP)手法を提案する。
線形射影変換器とハイブリッドCNN変換器のパフォーマンスギャップは、TSRモデルにおける視覚エンコーダのSSPにより緩和できる。
論文 参考訳(メタデータ) (2024-02-23T19:34:06Z) - White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is? [27.58916930770997]
数学的に完全に解釈可能なCRATEという,ホワイトボックストランスフォーマーのようなディープネットワークアーキテクチャのファミリーを示す。
実験によると、これらのネットワークは単純さにもかかわらず、大規模な実世界の画像とテキストデータセットの表現を圧縮し、分散化することを学習している。
論文 参考訳(メタデータ) (2023-11-22T02:23:32Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
我々は、より単純で効果的なTranformerベースのチャネルワイド自動回帰事前モデルを提案し、絶対画像圧縮変換器(ICT)を実現する。
提案したICTは、潜在表現からグローバルとローカルの両方のコンテキストをキャプチャできる。
我々は、サンドイッチのConvNeXtベースのプリ/ポストプロセッサで学習可能なスケーリングモジュールを活用し、よりコンパクトな潜在表現を正確に抽出する。
論文 参考訳(メタデータ) (2023-07-12T11:32:02Z) - Progressive Fourier Neural Representation for Sequential Video
Compilation [75.43041679717376]
連続学習によって動機づけられたこの研究は、シーケンシャルエンコーディングセッションを通じて、複数の複雑なビデオデータに対して、ニューラル暗黙表現を蓄積し、転送する方法を研究する。
本稿では,FFNR(Progressive Fourier Neural Representation)という,FFNR(Progressive Fourier Neural Representation)という,FFNR(Progressive Fourier Neural Representation)という手法を提案する。
我々は,UVG8/17とDAVIS50のビデオシーケンスベンチマークでPFNR法を検証し,強力な連続学習ベースラインよりも優れた性能向上を実現した。
論文 参考訳(メタデータ) (2023-06-20T06:02:19Z) - Vision Transformer with Quadrangle Attention [76.35955924137986]
窓面に基づく注意を一般的な四角形定式化に拡張する新しい四角形注意法(QA)を提案する。
提案手法では,既定のウィンドウを対象の四角形に変換するために,変換行列を予測し,エンドツーエンドで学習可能な四角形回帰モジュールを用いる。
QAをプレーンかつ階層的な視覚変換器に統合し、QFormerという名の新しいアーキテクチャを作成します。
論文 参考訳(メタデータ) (2023-03-27T11:13:50Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Transformer-based Image Compression [18.976159633970177]
Transformer-based Image Compression (TIC) アプローチは、標準変分オートエンコーダ(VAE)アーキテクチャをメインおよびハイパーエンコーダデコーダのペアで再利用する。
TICは、Deep Convolutional Neural Network(CNN)ベースの学習画像符号化(lic)メソッドや、最近承認されたVersatile Video Coding(VVC)標準のハンドクラフトルールベースの内部プロファイルなど、最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-11-12T13:13:20Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - Scalable Visual Transformers with Hierarchical Pooling [61.05787583247392]
本稿では,視覚的トークンを徐々にプールしてシーケンス長を縮小する階層的ビジュアルトランスフォーマ(hvt)を提案する。
計算の複雑さを増すことなく、深さ/幅/解像度/パッチサイズの寸法をスケールすることで、大きなメリットをもたらします。
当社のHVTはImageNetとCIFAR-100データセットの競合ベースラインを上回っています。
論文 参考訳(メタデータ) (2021-03-19T03:55:58Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
セマンティックセグメンテーションをシーケンスからシーケンスへの予測タスクとして扱う。
具体的には、イメージをパッチのシーケンスとしてエンコードするために純粋なトランスをデプロイします。
トランスのすべての層でモデル化されたグローバルコンテキストにより、このエンコーダは、SETR(SEgmentation TRansformer)と呼ばれる強力なセグメンテーションモデルを提供するための単純なデコーダと組み合わせることができる。
SETRはADE20K(50.28% mIoU)、Pascal Context(55.83% mIoU)、およびCityscapesの競争力のある結果に関する最新技術を達成している。
論文 参考訳(メタデータ) (2020-12-31T18:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。