論文の概要: Combating Misinformation in the Age of LLMs: Opportunities and
Challenges
- arxiv url: http://arxiv.org/abs/2311.05656v1
- Date: Thu, 9 Nov 2023 00:05:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 16:58:34.774280
- Title: Combating Misinformation in the Age of LLMs: Opportunities and
Challenges
- Title(参考訳): llm時代の誤情報と闘う--機会と課題
- Authors: Canyu Chen, Kai Shu
- Abstract要約: LLM(Large Language Models)の出現は、誤情報と戦う環境を再構築する大きな可能性を秘めている。
一方、LLMは、その深い世界知識と強力な推論能力のために、誤情報と戦うための有望な機会をもたらす。
一方,LLMは大規模に誤情報を生成するために容易に活用できるという点が重要な課題である。
- 参考スコア(独自算出の注目度): 21.712051537924136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Misinformation such as fake news and rumors is a serious threat on
information ecosystems and public trust. The emergence of Large Language Models
(LLMs) has great potential to reshape the landscape of combating
misinformation. Generally, LLMs can be a double-edged sword in the fight. On
the one hand, LLMs bring promising opportunities for combating misinformation
due to their profound world knowledge and strong reasoning abilities. Thus, one
emergent question is: how to utilize LLMs to combat misinformation? On the
other hand, the critical challenge is that LLMs can be easily leveraged to
generate deceptive misinformation at scale. Then, another important question
is: how to combat LLM-generated misinformation? In this paper, we first
systematically review the history of combating misinformation before the advent
of LLMs. Then we illustrate the current efforts and present an outlook for
these two fundamental questions respectively. The goal of this survey paper is
to facilitate the progress of utilizing LLMs for fighting misinformation and
call for interdisciplinary efforts from different stakeholders for combating
LLM-generated misinformation.
- Abstract(参考訳): フェイクニュースや噂などの誤報は、情報エコシステムや公衆信頼にとって深刻な脅威である。
LLM(Large Language Models)の出現は、誤情報と戦う環境を再構築する大きな可能性を秘めている。
一般的には、LLMは戦闘において両刃の剣となる。
一方、LLMは、その深い世界知識と強力な推論能力のために、誤情報と戦うための有望な機会をもたらす。
llmを使って誤った情報と戦うには、どうすればよいのか?
一方,LLMは大規模に誤情報を生成するために容易に活用できるという点が重要な課題である。
そして、もう1つの重要な疑問は、LLM生成の誤報に対抗する方法だ。
本稿では,LSMの出現前における誤情報との戦いの歴史を,まず体系的に概観する。
次に、現在の取り組みを説明し、これら2つの基本的な質問の展望を示す。
本研究の目的は,LLMを誤報対策に活用し,異なる利害関係者からの学際的努力を要請することである。
関連論文リスト
- From Deception to Detection: The Dual Roles of Large Language Models in Fake News [0.20482269513546458]
フェイクニュースは、情報エコシステムと公衆信頼の整合性に重大な脅威をもたらす。
LLM(Large Language Models)の出現は、フェイクニュースとの戦いを変革する大きな可能性を秘めている。
本稿では,偽ニュースに効果的に対処する各種LLMの能力について検討する。
論文 参考訳(メタデータ) (2024-09-25T22:57:29Z) - LLM Echo Chamber: personalized and automated disinformation [0.0]
大規模な言語モデルは、説得力のある人間のような誤報を大規模に広めることができ、世論に影響を及ぼす可能性がある。
本研究は,誤報を事実として伝達するLSMの能力に着目し,これらのリスクについて検討する。
そこで我々は,ソーシャルメディアのチャットルームを模擬した制御型デジタル環境であるLLM Echo Chamberを構築した。
このセットアップは、説得性と有害性のためにGPT4によって評価され、LSMを取り巻く倫理的懸念に光を当て、誤情報に対するより強力な保護の必要性を強調している。
論文 参考訳(メタデータ) (2024-09-24T17:04:12Z) - Can Editing LLMs Inject Harm? [122.83469484328465]
我々は,大規模言語モデルに対する新しいタイプの安全脅威として,知識編集を再構築することを提案する。
誤情報注入の危険性については,まずコモンセンス誤情報注入とロングテール誤情報注入に分類する。
偏見注入のリスクに対して, 偏見文をLLMに高効率で注入できるだけでなく, 1つの偏見文注入で偏見が増大することを発見した。
論文 参考訳(メタデータ) (2024-07-29T17:58:06Z) - LEMMA: Towards LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation [58.524237916836164]
外部知識を付加したLVLM強化マルチモーダル誤報検出システム LEMMAを提案する。
提案手法は,Twitter と Fakeddit のデータセットにおいて,上位ベースライン LVLM の精度を 7% と 13% に向上させる。
論文 参考訳(メタデータ) (2024-02-19T08:32:27Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Disinformation Capabilities of Large Language Models [0.564232659769944]
本稿では,現在世代の大言語モデル(LLM)の非情報化能力について述べる。
20個の偽情報物語を用いた10個のLDMの能力評価を行った。
LLMは、危険な偽情報の物語に一致する説得力のあるニュース記事を生成することができると結論付けている。
論文 参考訳(メタデータ) (2023-11-15T10:25:30Z) - Avalon's Game of Thoughts: Battle Against Deception through Recursive
Contemplation [80.126717170151]
本研究では,複雑なアバロンゲームを用いて,認知環境におけるLSMの可能性を探究する。
本稿では,LLMの偽情報識別・対策能力を高めるための新しいフレームワークRecursive Contemplation(ReCon)を提案する。
論文 参考訳(メタデータ) (2023-10-02T16:27:36Z) - Can LLM-Generated Misinformation Be Detected? [18.378744138365537]
大型言語モデル(LLM)は誤情報を生成するために利用することができる。
LLMが生成した誤報は、人間が書いた誤報よりも有害か?
論文 参考訳(メタデータ) (2023-09-25T00:45:07Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。