論文の概要: Optimal simulation-based Bayesian decisions
- arxiv url: http://arxiv.org/abs/2311.05742v1
- Date: Thu, 9 Nov 2023 20:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 16:34:15.867161
- Title: Optimal simulation-based Bayesian decisions
- Title(参考訳): 最適シミュレーションに基づくベイズ決定
- Authors: Justin Alsing, Thomas D. P. Edwards, Benjamin Wandelt
- Abstract要約: 難解な確率下での最適ベイズ決定の効率的な計算のための枠組みを提案する。
パラメータと行動空間のどの位置をシミュレートするかを選択するための能動的学習手法を開発した。
結果として生じるフレームワークは極めて効率的なシミュレーションであり、一般的に、関連する後部推論タスクのみよりもモデル呼び出しを少なくする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a framework for the efficient computation of optimal Bayesian
decisions under intractable likelihoods, by learning a surrogate model for the
expected utility (or its distribution) as a function of the action and data
spaces. We leverage recent advances in simulation-based inference and Bayesian
optimization to develop active learning schemes to choose where in parameter
and action spaces to simulate. This allows us to learn the optimal action in as
few simulations as possible. The resulting framework is extremely simulation
efficient, typically requiring fewer model calls than the associated posterior
inference task alone, and a factor of $100-1000$ more efficient than
Monte-Carlo based methods. Our framework opens up new capabilities for
performing Bayesian decision making, particularly in the previously challenging
regime where likelihoods are intractable, and simulations expensive.
- Abstract(参考訳): 本稿では,期待されるユーティリティ(あるいはその分布)の代理モデルをアクションとデータ空間の関数として学習することにより,難易度下での最適ベイズ決定の効率的な計算手法を提案する。
シミュレーションに基づく推論とベイズ最適化の最近の進歩を利用して、パラメータと動作空間のどこにシミュレーションするかを選択できるアクティブラーニングスキームを開発した。
これにより、できるだけ少ないシミュレーションで最適なアクションを学習できます。
結果として得られたフレームワークは、非常にシミュレーション効率が良く、一般的に、関連する後続推論タスク単独よりもモデル呼び出しが少なく、モンテカルロベースのメソッドよりも100~1000ドル効率がよい。
我々のフレームワークは、ベイズ的な意思決定を行うための新しい能力、特に、可能性の難しさとシミュレーションが高価であるこれまで難しかった状況に開きます。
関連論文リスト
- Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Simulation Based Bayesian Optimization [0.6526824510982799]
本稿では,獲得関数を最適化するための新しいアプローチとして,シミュレーションベースベイズ最適化(SBBO)を提案する。
SBBOは、離散変数を持つ空間に適した代理モデルを使用することができる。
代理モデルの様々な選択を用いたSBBO法の有効性を実証的に実証した。
論文 参考訳(メタデータ) (2024-01-19T16:56:11Z) - Amortized Bayesian Decision Making for simulation-based models [11.375835331641548]
シミュレータ上でベイズ決定を行う方法に関する問題に対処する。
本手法は,シミュレーションデータ上にニューラルネットワークを学習し,予測コストを予測する。
次に,医療神経科学における実世界のシミュレーターにおける最適な行動を推測するために,本手法を適用した。
論文 参考訳(メタデータ) (2023-12-05T11:29:54Z) - A Modular Framework for Reinforcement Learning Optimal Execution [68.8204255655161]
我々は、最適貿易実行問題への強化学習の適用のためのモジュラーフレームワークを開発する。
このフレームワークは、異なるシミュレーション設定の実装を容易にするために、柔軟性を念頭に設計されている。
論文 参考訳(メタデータ) (2022-08-11T09:40:42Z) - On the development of a Bayesian optimisation framework for complex
unknown systems [11.066706766632578]
本稿では, ベイズ最適化アルゴリズムを様々な合成試験関数に対して実験的に検討し, 比較する。
取得関数の選択とトレーニングサンプル数,取得関数の正確な計算,モンテカルロに基づくアプローチについて検討する。
論文 参考訳(メタデータ) (2022-07-19T09:50:34Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
理想主義的な方法で解析的トラクタビリティと計算可能性を解決する必要性は、効率と適用性を確保することを可能にしている。
論文 参考訳(メタデータ) (2021-08-27T19:03:32Z) - Bayesian Optimisation for Constrained Problems [0.0]
本稿では,制約を扱える知恵グラディエント獲得関数の新たな変種を提案する。
我々は、このアルゴリズムを、他の4つの最先端制約されたベイズ最適化アルゴリズムと比較し、その優れた性能を実証する。
論文 参考訳(メタデータ) (2021-05-27T15:43:09Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
提案手法は, 下流決定性能を直接最適化する手法よりもはるかに高速な, 後悔の収束率を実現する。
予測モデルは、既存のツールを使ったトレーニングが簡単かつ高速で、解釈が簡単で、私たちが示しているように、非常にうまく機能する決定につながる。
論文 参考訳(メタデータ) (2020-11-05T18:43:59Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。