論文の概要: Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
- arxiv url: http://arxiv.org/abs/2504.20527v1
- Date: Tue, 29 Apr 2025 08:13:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.807453
- Title: Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
- Title(参考訳): 確率関数の信頼関係に基づくベイズ最適化における適応レプリケーション手法
- Authors: Mickael Binois, Jeffrey Larson,
- Abstract要約: ガウス過程モデルに基づくシミュレーション最適化手法の開発と解析を行う。
提案手法は, 取得関数の選択から評価コストの設定に至るまで, 複製を促進するためのいくつかのスキームを提案する。
- 参考スコア(独自算出の注目度): 0.8379286663107846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop and analyze a method for stochastic simulation optimization relying on Gaussian process models within a trust-region framework. We are interested in the case when the variance of the objective function is large. We propose to rely on replication and local modeling to cope with this high-throughput regime, where the number of evaluations may become large to get accurate results while still keeping good performance. We propose several schemes to encourage replication, from the choice of the acquisition function to setup evaluation costs. Compared with existing methods, our results indicate good scaling, in terms of both accuracy (several orders of magnitude better than existing methods) and speed (taking into account evaluation costs).
- Abstract(参考訳): 我々は,信頼領域の枠組み内でガウス過程モデルに依存する確率的シミュレーション最適化手法を開発し,解析する。
目的関数のばらつきが大きい場合に関心がある。
我々は,この高スループットなシステムに対処するために,複製と局所モデリングを頼りにすることを提案する。
提案手法は, 取得関数の選択から評価コストの設定に至るまで, 複製を促進するためのいくつかのスキームを提案する。
その結果,既存の手法と比較して,精度(既存手法よりも桁違いに優れている)と速度(評価コストを考慮する)の両面で,優れたスケーリングが得られた。
関連論文リスト
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Semiparametric Counterfactual Regression [2.356908851188234]
一般化可能なフレームワーク内での非実効的回帰のための2つの頑健なスタイル推定器を提案する。
当社のアプローチでは,標準手法を維持しながら適応性を高めるために,漸進的な介入を用いる。
解析の結果,提案した推定器は幅広い問題に対して$sqrn$-consistencyと正規性が得られることがわかった。
論文 参考訳(メタデータ) (2025-04-03T15:32:26Z) - Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - Differentiating Policies for Non-Myopic Bayesian Optimization [5.793371273485735]
本稿では,ロールアウト関数とその勾配を効率的に推定し,サンプリングポリシを実現する方法を示す。
本稿では,ロールアウト関数とその勾配を効率的に推定し,サンプリングポリシを実現する方法について述べる。
論文 参考訳(メタデータ) (2024-08-14T21:00:58Z) - Optimal simulation-based Bayesian decisions [0.0]
難解な確率下での最適ベイズ決定の効率的な計算のための枠組みを提案する。
パラメータと行動空間のどの位置をシミュレートするかを選択するための能動的学習手法を開発した。
結果として生じるフレームワークは極めて効率的なシミュレーションであり、一般的に、関連する後部推論タスクのみよりもモデル呼び出しを少なくする。
論文 参考訳(メタデータ) (2023-11-09T20:59:52Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Bayesian Optimization with Informative Covariance [13.113313427848828]
探索空間の特定の領域の好みを符号化するために,非定常性を利用した新しい情報共分散関数を提案する。
提案した関数は,より弱い事前情報の下でも,ハイ次元でのベイズ最適化のサンプル効率を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-08-04T15:05:11Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
本稿では,不確実なプロセスのリアルタイム最適化において,プラントモデルミスマッチを克服するための修飾子適応方式について検討する。
提案したスキームは物理モデルを組み込んでおり、探査中のリスクを最小限に抑えるために信頼領域のアイデアに依存している。
取得関数の使用、プロセスノイズレベルを知る、または名目上のプロセスモデルを指定する利点を図示する。
論文 参考訳(メタデータ) (2020-09-18T12:57:17Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。