論文の概要: Model-as-a-Service (MaaS): A Survey
- arxiv url: http://arxiv.org/abs/2311.05804v1
- Date: Fri, 10 Nov 2023 00:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 16:07:51.383372
- Title: Model-as-a-Service (MaaS): A Survey
- Title(参考訳): モデル・アズ・ア・サービス(MaaS)の調査
- Authors: Wensheng Gan, Shicheng Wan, Philip S. Yu
- Abstract要約: ファウンデーションモデルは、生成人工知能(GenAI)の一形態である
モデル・アズ・ア・サービス(M: Model-as-a-Service)は、GenAIモデルのデプロイメントと利用に革命をもたらす画期的なパラダイムとして登場した。
- 参考スコア(独自算出の注目度): 42.70857461774014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the increased number of parameters and data in the pre-trained model
exceeding a certain level, a foundation model (e.g., a large language model)
can significantly improve downstream task performance and emerge with some
novel special abilities (e.g., deep learning, complex reasoning, and human
alignment) that were not present before. Foundation models are a form of
generative artificial intelligence (GenAI), and Model-as-a-Service (MaaS) has
emerged as a groundbreaking paradigm that revolutionizes the deployment and
utilization of GenAI models. MaaS represents a paradigm shift in how we use AI
technologies and provides a scalable and accessible solution for developers and
users to leverage pre-trained AI models without the need for extensive
infrastructure or expertise in model training. In this paper, the introduction
aims to provide a comprehensive overview of MaaS, its significance, and its
implications for various industries. We provide a brief review of the
development history of "X-as-a-Service" based on cloud computing and present
the key technologies involved in MaaS. The development of GenAI models will
become more democratized and flourish. We also review recent application
studies of MaaS. Finally, we highlight several challenges and future issues in
this promising area. MaaS is a new deployment and service paradigm for
different AI-based models. We hope this review will inspire future research in
the field of MaaS.
- Abstract(参考訳): 事前訓練されたモデルのパラメータやデータ数が一定のレベルを超えるため、基礎モデル(例えば、大きな言語モデル)は、下流のタスクパフォーマンスを著しく向上させ、これまで存在しなかった新しい特殊能力(ディープラーニング、複雑な推論、人間のアライメントなど)を出現させることができる。
ファウンデーションモデルは生成人工知能(GenAI)の一形態であり、モデル・アズ・ア・サービス(MaaS)はGenAIモデルの展開と利用に革命をもたらす画期的なパラダイムとして登場した。
MaaSは、AIテクノロジの使用方法のパラダイムシフトであり、開発者やユーザが、モデルトレーニングにおける広範なインフラストラクチャや専門知識を必要とせずに、事前トレーニングされたAIモデルを活用するための、スケーラブルでアクセス可能なソリューションを提供する。
本稿では,MaaSとその意義,および各種産業におけるその意義を包括的に概観することを目的とする。
クラウドコンピューティングに基づく"X-as-a-Service"の開発経緯を概観し、MaaSに関わる重要な技術を紹介する。
GenAIモデルの開発は民主化され、繁栄するでしょう。
MaaSの最近の応用研究についてもレビューする。
最後に、この有望な領域におけるいくつかの課題と今後の課題を取り上げる。
MaaSは、さまざまなAIベースのモデルのための、新しいデプロイメントとサービスパラダイムである。
このレビューがMaaSの分野における将来の研究を刺激することを期待している。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - On the Limitations and Prospects of Machine Unlearning for Generative AI [7.795648142175443]
Generative AI(GenAI)は、潜伏変数やその他のデータモダリティから現実的で多様なデータサンプルを合成することを目的としている。
GenAIは自然言語、画像、オーディオ、グラフなど、さまざまな領域で顕著な成果を上げている。
しかし、データプライバシ、セキュリティ、倫理に課題やリスクも生じている。
論文 参考訳(メタデータ) (2024-08-01T08:35:40Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Reusable MLOps: Reusable Deployment, Reusable Infrastructure and
Hot-Swappable Machine Learning models and services [0.0]
私たちは、Reusable MLOpsと呼ばれるAI/MLオペレーションの分野で、持続可能な新しい概念を紹介します。
既存のデプロイメントとインフラストラクチャを再利用して、インフラストラクチャやマイクロサービスを分解することなく、それらをホットスワッピングすることで、新しいモデルを提供しています。
論文 参考訳(メタデータ) (2024-02-19T23:40:46Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - ChatGPT-Like Large-Scale Foundation Models for Prognostics and Health
Management: A Survey and Roadmaps [8.62142522782743]
産業生産と設備整備において,PHM技術は重要な役割を担っている。
ChatGPTやDALLE-Eといった大規模ファンデーションモデル(LSF-Model)は、AIがAI-2.0の新しい時代に入ることを象徴している。
本稿では,LSFモデルの主要なコンポーネントと最新の開発について,体系的に解説する。
論文 参考訳(メタデータ) (2023-05-10T21:37:44Z) - Foundation models in brief: A historical, socio-technical focus [2.5991265608180396]
ディープラーニングをスケールアップすることで、将来のAI開発には、ファンデーションモデルが破壊的になる可能性がある。
モデルは自然言語処理やコンピュータビジョンといった分野における様々なタスクにおいて最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-12-17T22:11:33Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
我々はInterNという新しい学習パラダイムを開発した。
複数の段階の複数のソースからの監視信号を用いて学習することにより、トレーニング対象のモデルは強力な一般化性を生み出す。
ほとんどの場合、ターゲットドメインのトレーニングデータの10%しか適応していないモデルが、完全なデータセットでトレーニングされたトレーニングデータよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T18:42:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。