論文の概要: AI Foundation Models in Remote Sensing: A Survey
- arxiv url: http://arxiv.org/abs/2408.03464v1
- Date: Tue, 6 Aug 2024 22:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 14:16:39.526252
- Title: AI Foundation Models in Remote Sensing: A Survey
- Title(参考訳): リモートセンシングにおけるAIファンデーションモデル
- Authors: Siqi Lu, Junlin Guo, James R Zimmer-Dauphinee, Jordan M Nieusma, Xiao Wang, Parker VanValkenburgh, Steven A Wernke, Yuankai Huo,
- Abstract要約: 本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
- 参考スコア(独自算出の注目度): 6.036426846159163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) technologies have profoundly transformed the field of remote sensing, revolutionizing data collection, processing, and analysis. Traditionally reliant on manual interpretation and task-specific models, remote sensing has been significantly enhanced by the advent of foundation models--large-scale, pre-trained AI models capable of performing a wide array of tasks with unprecedented accuracy and efficiency. This paper provides a comprehensive survey of foundation models in the remote sensing domain, covering models released between June 2021 and June 2024. We categorize these models based on their applications in computer vision and domain-specific tasks, offering insights into their architectures, pre-training datasets, and methodologies. Through detailed performance comparisons, we highlight emerging trends and the significant advancements achieved by these foundation models. Additionally, we discuss the technical challenges, practical implications, and future research directions, addressing the need for high-quality data, computational resources, and improved model generalization. Our research also finds that pre-training methods, particularly self-supervised learning techniques like contrastive learning and masked autoencoders, significantly enhance the performance and robustness of foundation models in remote sensing tasks such as scene classification, object detection, and other applications. This survey aims to serve as a resource for researchers and practitioners by providing a panorama of advances and promising pathways for continued development and application of foundation models in remote sensing.
- Abstract(参考訳): 人工知能(AI)技術は、リモートセンシング、データ収集、処理、分析の分野を大きく変えた。
従来、手動の解釈とタスク固有のモデルに依存していたリモートセンシングは、前例のない精度と効率で幅広いタスクを実行することができる、大規模で訓練済みのAIモデルという基礎モデルの出現によって、大幅に強化されてきた。
本稿では,2021年6月から2024年6月までに,リモートセンシング領域における基礎モデルの包括的調査を行う。
これらのモデルは、コンピュータビジョンやドメイン固有のタスクにおける応用に基づいて分類し、アーキテクチャ、事前学習データセット、方法論に関する洞察を提供する。
詳細な性能比較を通じて、これらの基礎モデルによって達成される新しいトレンドと重要な進歩を強調します。
さらに、高品質なデータ、計算資源、改良されたモデル一般化の必要性に対処しながら、技術的な課題、実践的含意、今後の研究方向性について論じる。
また,事前学習手法,特にコントラスト学習やマスク付きオートエンコーダのような自己指導型学習手法は,シーン分類や物体検出などのリモートセンシングタスクにおいて,基礎モデルの性能と堅牢性を大幅に向上させることがわかった。
本調査は, 遠隔センシングにおける基礎モデルの開発と応用を継続するために, 進展のパノラマと将来性のある経路を提供することによって, 研究者や実践者の資源として機能することを目的としている。
関連論文リスト
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
本は、機械学習とディープラーニングにおける最先端の進歩をカバーしている。
畳み込みニューラルネットワーク(CNN)、YOLOアーキテクチャ、DeTRのようなトランスフォーマーベースのアプローチに重点を置いている。
また、人工知能(AI)技術と拡張オブジェクト検出のための大規模言語モデルの統合も検討している。
論文 参考訳(メタデータ) (2024-10-21T02:10:49Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions [6.2719115566879236]
拡散モデル(DM)は画像データ拡張のための強力なツールとして登場した。
DMは、基礎となるデータ分布を学習することで、現実的で多様な画像を生成する。
この分野における現在の課題と今後の研究方向性について論じる。
論文 参考訳(メタデータ) (2024-07-04T18:06:48Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Training and Serving System of Foundation Models: A Comprehensive Survey [32.0115390377174]
本稿では,様々な観点から基礎モデルを訓練・提供するための手法を幅広く検討する。
ネットワーク、コンピューティング、ストレージといったより詳細な側面を含む、最先端の手法の詳細な分類を提供する。
論文 参考訳(メタデータ) (2024-01-05T05:27:15Z) - Comprehensive Exploration of Synthetic Data Generation: A Survey [4.485401662312072]
この研究は、過去10年間で417のSynthetic Data Generationモデルを調査します。
その結果、ニューラルネットワークベースのアプローチが普及し、モデルのパフォーマンスと複雑性が向上したことが明らかになった。
コンピュータビジョンが支配的であり、GANが主要な生成モデルであり、拡散モデル、トランスフォーマー、RNNが競合する。
論文 参考訳(メタデータ) (2024-01-04T20:23:51Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
ジェネレーティブAI、コンピュータビジョン、自然言語処理は、AIモデルをさまざまな製品に統合するきっかけとなった。
本調査は,大規模ディープラーニングサービスシステムにおける新たな課題と最適化の機会を要約し,分類することを目的としている。
論文 参考訳(メタデータ) (2023-11-22T18:46:05Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
6つの分類と6つのセグメンテーションタスクからなるベンチマークを提案する。
このベンチマークは、さまざまな地球観測タスクの進行の原動力となる。
論文 参考訳(メタデータ) (2023-06-06T16:16:05Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。