論文の概要: Modular and Integrated AI Control Framework across Fiber and Wireless Networks for 6G
- arxiv url: http://arxiv.org/abs/2502.15731v1
- Date: Mon, 03 Feb 2025 23:12:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:56:11.091875
- Title: Modular and Integrated AI Control Framework across Fiber and Wireless Networks for 6G
- Title(参考訳): 6G用ファイバおよび無線ネットワークにおけるモジュール・統合AI制御フレームワーク
- Authors: Merim Dzaferagic, Marco Ruffini, Daniel Kilper,
- Abstract要約: 本稿では,光ファイバーネットワークと無線ネットワークの両方で使用するために,高度に柔軟で適応可能なAIコントローラの包括的なフレームワークを提案する。
当社のアプローチでは,さまざまなネットワークトランスポート技術やドメインにまたがる統合AIコントロールフレームワークの必要性に対処し,インテリジェントで自動化された,スケーラブルな6Gネットワークの開発を可能にする。
- 参考スコア(独自算出の注目度): 4.32403467508203
- License:
- Abstract: The rapid evolution of communication networks towards 6G increasingly incorporates advanced AI-driven controls across various network segments to achieve intelligent, zero-touch operation. This paper proposes a comprehensive and modular framework for AI controllers, designed to be highly flexible and adaptable for use across both fiber optical and radio networks. Building on the principles established by the O-RAN Alliance for near-Real-Time RAN Intelligent Controllers (near-RT RICs), our framework extends this AI-driven control into the optical domain. Our approach addresses the critical need for a unified AI control framework across diverse network transport technologies and domains, enabling the development of intelligent, automated, and scalable 6G networks.
- Abstract(参考訳): 6Gへの通信ネットワークの急速な進化により、インテリジェントでゼロタッチ操作を実現するために、さまざまなネットワークセグメントにわたって高度なAI駆動制御が組み込まれている。
本稿では,光ファイバーネットワークと無線ネットワークの両方において,高度にフレキシブルで適応できるように設計された,AIコントローラのための包括的かつモジュラーなフレームワークを提案する。
O-RAN Allianceが、ほぼリアルタイムのRANインテリジェントコントローラ(近RT RIC)のために確立した原則に基づいて、私たちのフレームワークは、このAI駆動制御を光ドメインに拡張します。
当社のアプローチでは,さまざまなネットワークトランスポート技術やドメインにまたがる統合AIコントロールフレームワークの必要性に対処し,インテリジェントで自動化された,スケーラブルな6Gネットワークの開発を可能にする。
関連論文リスト
- Towards Cognitive Service Delivery on B5G through AIaaS Architecture [0.16070833439280313]
4Gから5Gへの移行は、ビジネス分野に向けたネットワークの統合において、AIに重大な意味を持つ。
本稿では,AI能力B5Gと6Gでコアネットワークをさらに強化するために必要なインターフェースを提示するNWDAFの進化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-23T20:30:29Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
本稿では,6GネットワークにおけるAIと通信の概要を概観する。
我々はまず、AIを無線通信に組み込むことの背景にある要因と、AIと6Gの収束のビジョンを概観する。
講演はその後、6Gネットワーク内でAIの統合を想定する詳細な説明へと移行する。
論文 参考訳(メタデータ) (2024-12-19T05:36:34Z) - Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems [31.754166695074353]
本稿では、大規模にデプロイされた6GネットワークにAIを統合するための分散マルチパーティ・マルチネットワークAI(DMMAI)フレームワークを紹介する。
DMMAIは、さまざまなネットワークプラットフォームにわたるAI駆動コントロールを調和させ、自らを自律的に構成、監視、修復するネットワークを促進する。
弊社のアプローチでは、マルチネットワークオーケストレーションとAIコントロールの統合について検討し、6GネットワークにおけるAI駆動のコーディネーションのための標準フレームワークにおける重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-04-15T15:21:25Z) - AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems [3.5370806221677245]
本稿では,Large Language Models (LLM) とGeneralized Pretrained Transformer (GPT) のシームレスな統合を6Gシステムで検討する。
LLMとGPTは、従来の前世代のAIと機械学習(ML)アルゴリズムとともに、共同で中心的なステージに立つ。
論文 参考訳(メタデータ) (2023-11-10T02:59:16Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Transformer-Empowered 6G Intelligent Networks: From Massive MIMO
Processing to Semantic Communication [71.21459460829409]
トランスフォーマーとして知られる新しいディープラーニングアーキテクチャを導入し、その6Gネットワーク設計への影響について論じる。
具体的には、6GネットワークにおけるMIMO(Multiple-input multiple-output)システムと様々な意味コミュニケーション問題に対するトランスフォーマーベースのソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-08T03:22:20Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6Gはワイヤレスの進化を「コネクテッドモノ」から「コネクテッドインテリジェンス」に変革する
ディープラーニングとビッグデータ分析に基づくAIシステムは、膨大な計算と通信資源を必要とする。
エッジAIは、センサー、通信、計算、インテリジェンスをシームレスに統合する6Gの破壊的技術として際立っている。
論文 参考訳(メタデータ) (2021-11-24T11:47:16Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Intelligent O-RAN for Beyond 5G and 6G Wireless Networks [27.479161974811284]
オープン性とインテリジェンス(英語版)の原則に基づいて、無線アクセスネットワーク(RAN)アーキテクチャの強化に向けたオペレーターのグローバルな取り組みが続けられている。
目的は、第5世代(5G)を超えるインテリジェントな無線制御と将来の第6世代(6G)無線ネットワークを提供するオープンハードウェア上に、オペレータ定義のRANアーキテクチャを構築することである。
この記事では、O-RANアライアンスによって規定されたOpen RANの概念、原則、要件について紹介する。
論文 参考訳(メタデータ) (2020-05-17T21:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。