Automated Heterogeneous Low-Bit Quantization of Multi-Model Deep
Learning Inference Pipeline
- URL: http://arxiv.org/abs/2311.05870v1
- Date: Fri, 10 Nov 2023 05:02:20 GMT
- Title: Automated Heterogeneous Low-Bit Quantization of Multi-Model Deep
Learning Inference Pipeline
- Authors: Jayeeta Mondal, Swarnava Dey, Arijit Mukherjee
- Abstract summary: Multiple Deep Neural Networks (DNNs) integrated into single Deep Learning (DL) inference pipelines pose challenges for edge deployment.
This paper introduces an automated heterogeneous quantization approach for DL inference pipelines with multiple DNNs.
- Score: 2.9342849999747624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Deep Neural Networks (DNNs) integrated into single Deep Learning
(DL) inference pipelines e.g. Multi-Task Learning (MTL) or Ensemble Learning
(EL), etc., albeit very accurate, pose challenges for edge deployment. In these
systems, models vary in their quantization tolerance and resource demands,
requiring meticulous tuning for accuracy-latency balance. This paper introduces
an automated heterogeneous quantization approach for DL inference pipelines
with multiple DNNs.
Related papers
- Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - Embedded Knowledge Distillation in Depth-level Dynamic Neural Network [8.207403859762044]
We propose an elegant Depth-level Dynamic Neural Network (DDNN) integrated different-depth sub-nets of similar architectures.
In this article, we design the Embedded-Knowledge-Distillation (EKD) training mechanism for the DDNN to implement semantic knowledge transfer from the teacher (full) net to multiple sub-nets.
Experiments on CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that sub-nets in DDNN with EKD training achieves better performance than the depth-level pruning or individually training.
arXiv Detail & Related papers (2021-03-01T06:35:31Z) - Adaptive Quantization of Model Updates for Communication-Efficient
Federated Learning [75.45968495410047]
Communication of model updates between client nodes and the central aggregating server is a major bottleneck in federated learning.
Gradient quantization is an effective way of reducing the number of bits required to communicate each model update.
We propose an adaptive quantization strategy called AdaFL that aims to achieve communication efficiency as well as a low error floor.
arXiv Detail & Related papers (2021-02-08T19:14:21Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - MSP: An FPGA-Specific Mixed-Scheme, Multi-Precision Deep Neural Network
Quantization Framework [39.43144643349916]
This paper targets the commonly used FPGA devices as the hardware platforms for deep learning edge computing.
We propose a mixed-scheme DNN quantization method that incorporates both the linear and non-linear number systems for quantization.
We use a quantization method that supports multiple precisions along the intra-layer dimension, while the existing quantization methods apply multi-precision quantization along the inter-layer dimension.
arXiv Detail & Related papers (2020-09-16T04:24:18Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Dynamic Sparsity Neural Networks for Automatic Speech Recognition [44.352231175123215]
We present Dynamic Sparsity Neural Networks (DSNN) that, once trained, can instantly switch to any predefined sparsity configuration at run-time.
Our trained DSNN model, therefore, can greatly ease the training process and simplify deployment in diverse scenarios with resource constraints.
arXiv Detail & Related papers (2020-05-16T22:08:54Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.