Genetic Algorithm enhanced by Deep Reinforcement Learning in parent
selection mechanism and mutation : Minimizing makespan in permutation flow
shop scheduling problems
- URL: http://arxiv.org/abs/2311.05937v2
- Date: Wed, 17 Jan 2024 10:52:46 GMT
- Title: Genetic Algorithm enhanced by Deep Reinforcement Learning in parent
selection mechanism and mutation : Minimizing makespan in permutation flow
shop scheduling problems
- Authors: Maissa Irmouli, Nourelhouda Benazzoug, Alaa Dania Adimi, Fatma Zohra
Rezkellah, Imane Hamzaoui, Thanina Hamitouche, Malika Bessedik, Fatima Si
Tayeb
- Abstract summary: The proposed RL+GA method was specifically tested on the flow shop scheduling problem (FSP)
The hybrid algorithm incorporates neural networks (NN) and uses the off-policy method Q-learning.
Results of the study highlight the effectiveness of the RL+GA approach in improving the performance of the primitive GA.
- Score: 0.18846515534317265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a reinforcement learning (RL) approach to address the
challenges associated with configuring and optimizing genetic algorithms (GAs)
for solving difficult combinatorial or non-linear problems. The proposed RL+GA
method was specifically tested on the flow shop scheduling problem (FSP). The
hybrid algorithm incorporates neural networks (NN) and uses the off-policy
method Q-learning or the on-policy method Sarsa(0) to control two key genetic
algorithm (GA) operators: parent selection mechanism and mutation. At each
generation, the RL agent's action is determining the selection method, the
probability of the parent selection and the probability of the offspring
mutation. This allows the RL agent to dynamically adjust the selection and
mutation based on its learned policy. The results of the study highlight the
effectiveness of the RL+GA approach in improving the performance of the
primitive GA. They also demonstrate its ability to learn and adapt from
population diversity and solution improvements over time. This adaptability
leads to improved scheduling solutions compared to static parameter
configurations while maintaining population diversity throughout the
evolutionary process.
Related papers
- Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
A reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions.
The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams.
arXiv Detail & Related papers (2023-04-08T14:32:12Z) - Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
Optimization [13.131971623143622]
We discover entirely new genetic algorithms in a data-driven fashion.
We parametrize selection and mutation rate adaptation as cross- and self-attention modules.
The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets.
arXiv Detail & Related papers (2023-04-08T12:14:15Z) - Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to
regulate chromosomes expression [0.0]
This paper proposes a new epigenetics algorithm that mimics the epigenetics phenomenon known as methylation.
The novelty of our epigenetics algorithms lies primarily in taking advantage of attention mechanisms and deep learning, which fits well with the genes/silencing concept.
arXiv Detail & Related papers (2023-03-15T21:33:21Z) - Effective Mutation Rate Adaptation through Group Elite Selection [50.88204196504888]
This paper introduces the Group Elite Selection of Mutation Rates (GESMR) algorithm.
GESMR co-evolves a population of solutions and a population of MRs, such that each MR is assigned to a group of solutions.
With the same number of function evaluations and with almost no overhead, GESMR converges faster and to better solutions than previous approaches.
arXiv Detail & Related papers (2022-04-11T01:08:26Z) - VNE Strategy based on Chaotic Hybrid Flower Pollination Algorithm
Considering Multi-criteria Decision Making [12.361459296815559]
Design strategy of hybrid flower pollination algorithm for Virtual Network Embedding (VNE) problem is discussed.
Cross operation is used to replace the cross-pollination operation to complete the global search.
Life cycle mechanism is introduced as a complement to the traditional fitness-based selection strategy.
arXiv Detail & Related papers (2022-02-07T00:57:00Z) - Direct Mutation and Crossover in Genetic Algorithms Applied to
Reinforcement Learning Tasks [0.9137554315375919]
This paper will focus on applying neuroevolution using a simple genetic algorithm (GA) to find the weights of a neural network that produce optimally behaving agents.
We present two novel modifications that improve the data efficiency and speed of convergence when compared to the initial implementation.
arXiv Detail & Related papers (2022-01-13T07:19:28Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.