Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration
- URL: http://arxiv.org/abs/2311.06062v3
- Date: Tue, 25 Jun 2024 12:36:02 GMT
- Title: Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration
- Authors: Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, Tao Jiang,
- Abstract summary: Membership Inference Attacks (MIAs) aim to infer whether a target data record has been utilized for model training or not.
We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA)
Specifically, since memorization in LLMs is inevitable during the training process and occurs before overfitting, we introduce a more reliable membership signal.
- Score: 32.15773300068426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Prior attempts have quantified the privacy risks of language models (LMs) via MIAs, but there is still no consensus on whether existing MIA algorithms can cause remarkable privacy leakage on practical Large Language Models (LLMs). Existing MIAs designed for LMs can be classified into two categories: reference-free and reference-based attacks. They are both based on the hypothesis that training records consistently strike a higher probability of being sampled. Nevertheless, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. The reference-based attack seems to achieve promising effectiveness in LLMs, which measures a more reliable membership signal by comparing the probability discrepancy between the target model and the reference model. However, the performance of reference-based attack is highly dependent on a reference dataset that closely resembles the training dataset, which is usually inaccessible in the practical scenario. Overall, existing MIAs are unable to effectively unveil privacy leakage over practical fine-tuned LLMs that are overfitting-free and private. We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, since memorization in LLMs is inevitable during the training process and occurs before overfitting, we introduce a more reliable membership signal, probabilistic variation, which is based on memorization rather than overfitting. Furthermore, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs.
Related papers
- Hyperparameters in Score-Based Membership Inference Attacks [6.249768559720121]
Membership Inference Attacks (MIAs) have emerged as a valuable framework for evaluating privacy leakage by machine learning models.
We propose a novel approach to select the hyper parameters for training the shadow models for MIA when the attacker has no prior knowledge about them.
We find no statistically significant evidence that performing HPO using training data would increase vulnerability to MIA.
arXiv Detail & Related papers (2025-02-10T11:44:46Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
We introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent.
We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements.
Our findings show that instruction-tuned models can expose pre-training data as much as their base-models, if not more so, and using instructions proposed by other LLMs can open a new avenue of automated attacks.
arXiv Detail & Related papers (2024-03-05T19:32:01Z) - Pandora's White-Box: Precise Training Data Detection and Extraction in Large Language Models [4.081098869497239]
We develop state-of-the-art privacy attacks against Large Language Models (LLMs)
New membership inference attacks (MIAs) against pretrained LLMs perform hundreds of times better than baseline attacks.
In fine-tuning, we find that a simple attack based on the ratio of the loss between the base and fine-tuned models is able to achieve near-perfect MIA performance.
arXiv Detail & Related papers (2024-02-26T20:41:50Z) - Do Membership Inference Attacks Work on Large Language Models? [141.2019867466968]
Membership inference attacks (MIAs) attempt to predict whether a particular datapoint is a member of a target model's training data.
We perform a large-scale evaluation of MIAs over a suite of language models trained on the Pile, ranging from 160M to 12B parameters.
We find that MIAs barely outperform random guessing for most settings across varying LLM sizes and domains.
arXiv Detail & Related papers (2024-02-12T17:52:05Z) - MIA-BAD: An Approach for Enhancing Membership Inference Attack and its
Mitigation with Federated Learning [6.510488168434277]
The membership inference attack (MIA) is a popular paradigm for compromising the privacy of a machine learning (ML) model.
We propose an enhanced Membership Inference Attack with the Batch-wise generated Attack dataset (MIA-BAD)
We show how training an ML model through FL, has some distinct advantages and investigate how the threat introduced with the proposed MIA-BAD approach can be mitigated with FL approaches.
arXiv Detail & Related papers (2023-11-28T06:51:26Z) - Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion
Model [14.834360664780709]
Model attacks (MIAs) aim to recover private data from inaccessible training sets of deep learning models.
This paper develops a novel MIA method, leveraging a conditional diffusion model (CDM) to recover representative samples under the target label.
Experimental results show that this method can generate similar and accurate samples to the target label, outperforming generators of previous approaches.
arXiv Detail & Related papers (2023-07-17T12:14:24Z) - Membership Inference Attacks against Language Models via Neighbourhood
Comparison [45.086816556309266]
Membership Inference attacks (MIAs) aim to predict whether a data sample was present in the training data of a machine learning model or not.
Recent work has demonstrated that reference-based attacks which compare model scores to those obtained from a reference model trained on similar data can substantially improve the performance of MIAs.
We investigate their performance in more realistic scenarios and find that they are highly fragile in relation to the data distribution used to train reference models.
arXiv Detail & Related papers (2023-05-29T07:06:03Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.