Noisy Neighbors: Efficient membership inference attacks against LLMs
- URL: http://arxiv.org/abs/2406.16565v1
- Date: Mon, 24 Jun 2024 12:02:20 GMT
- Title: Noisy Neighbors: Efficient membership inference attacks against LLMs
- Authors: Filippo Galli, Luca Melis, Tommaso Cucinotta,
- Abstract summary: This paper introduces an efficient methodology that generates textitnoisy neighbors for a target sample by adding noise in the embedding space.
Our findings demonstrate that this approach closely matches the effectiveness of employing shadow models, showing its usability in practical privacy auditing scenarios.
- Score: 2.666596421430287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential of transformer-based LLMs risks being hindered by privacy concerns due to their reliance on extensive datasets, possibly including sensitive information. Regulatory measures like GDPR and CCPA call for using robust auditing tools to address potential privacy issues, with Membership Inference Attacks (MIA) being the primary method for assessing LLMs' privacy risks. Differently from traditional MIA approaches, often requiring computationally intensive training of additional models, this paper introduces an efficient methodology that generates \textit{noisy neighbors} for a target sample by adding stochastic noise in the embedding space, requiring operating the target model in inference mode only. Our findings demonstrate that this approach closely matches the effectiveness of employing shadow models, showing its usability in practical privacy auditing scenarios.
Related papers
- SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy [0.0]
We investigate capability of Large Language Models (Ms) to generate synthetic datasets with Differential Privacy (DP) mechanisms.
Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process.
We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data.
arXiv Detail & Related papers (2024-12-30T01:10:10Z) - EM-MIAs: Enhancing Membership Inference Attacks in Large Language Models through Ensemble Modeling [2.494935495983421]
This paper proposes a novel ensemble attack method that integrates several existing MIAs techniques into an XGBoost-based model to enhance overall attack performance (EM-MIAs)
Experimental results demonstrate that the ensemble model significantly improves both AUC-ROC and accuracy compared to individual attack methods across various large language models and datasets.
arXiv Detail & Related papers (2024-12-23T03:47:54Z) - Preventing Non-intrusive Load Monitoring Privacy Invasion: A Precise Adversarial Attack Scheme for Networked Smart Meters [99.90150979732641]
We propose an innovative scheme based on adversarial attack in this paper.
The scheme effectively prevents NILM models from violating appliance-level privacy, while also ensuring accurate billing calculation for users.
Our solutions exhibit transferability, making the generated perturbation signal from one target model applicable to other diverse NILM models.
arXiv Detail & Related papers (2024-12-22T07:06:46Z) - Active Learning for Robust and Representative LLM Generation in Safety-Critical Scenarios [32.16984263644299]
Large Language Models (LLMs) can generate valuable data for safety measures, but often exhibit distributional biases.
We propose a novel framework that integrates active learning with clustering to guide LLM generation.
Our results show that the proposed framework produces a more representative set of safety scenarios without requiring prior knowledge of the underlying data distribution.
arXiv Detail & Related papers (2024-10-14T21:48:14Z) - Ingest-And-Ground: Dispelling Hallucinations from Continually-Pretrained LLMs with RAG [2.7972592976232833]
We continually pre-train the base LLM model with a privacy-specific knowledge base and then augment it with a semantic RAG layer.
Our evaluations demonstrate that this approach enhances the model performance (as much as doubled metrics compared to out-of-box LLM) in handling privacy-related queries.
arXiv Detail & Related papers (2024-09-30T20:32:29Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
Membership Inference Attacks aim to infer whether a target data record has been utilized for model training.
We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA)
arXiv Detail & Related papers (2023-11-10T13:55:05Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.