Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning
- URL: http://arxiv.org/abs/2311.06456v6
- Date: Wed, 14 May 2025 13:49:10 GMT
- Title: Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning
- Authors: Yifei Wang, Yunrui Li, Lin Liu, Pengyu Hong, Hao Xu,
- Abstract summary: We introduce Asymmetric Contrastive Multimodal Learning (ACML) to enhance molecular understanding and accelerate advancements in drug discovery.<n>ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations.<n>We demonstrate the effectiveness of this framework through large-scale cross-modality retrieval and isomer discrimination tasks.
- Score: 23.85388398199658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The versatility of multimodal deep learning holds tremendous promise for advancing scientific research and practical applications. As this field continues to evolve, the collective power of cross-modal analysis promises to drive transformative innovations, opening new frontiers in chemical understanding and drug discovery. Hence, we introduce Asymmetric Contrastive Multimodal Learning (ACML), a specifically designed approach to enhance molecular understanding and accelerate advancements in drug discovery. ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations. By combining pre-trained chemical unimodal encoders and a shallow-designed graph encoder with 5 layers, ACML facilitates the assimilation of coordinated chemical semantics from different modalities, leading to comprehensive representation learning with efficient training. We demonstrate the effectiveness of this framework through large-scale cross-modality retrieval and isomer discrimination tasks. Additionally, ACML enhances interpretability by revealing chemical semantics in graph presentations and bolsters the expressive power of graph neural networks, as evidenced by improved performance in molecular property prediction tasks from MoleculeNet and Therapeutics Data Commons (TDC). Ultimately, ACML exemplifies its potential to revolutionize molecular representational learning, offering deeper insights into the chemical semantics of diverse modalities and paving the way for groundbreaking advancements in chemical research and drug discovery.
Related papers
- Towards Interpretable Drug-Drug Interaction Prediction: A Graph-Based Approach with Molecular and Network-Level Explanations [3.6099926707292793]
Drug-drug interactions (DDIs) represent a critical challenge in pharmacology, often leading to adverse drug reactions with significant implications for patient safety and healthcare outcomes.<n>We propose MolecBioNet, a novel graph-based framework that integrates molecular and biomedical knowledge for robust and interpretable DDI prediction.
arXiv Detail & Related papers (2025-07-12T07:43:19Z) - InversionGNN: A Dual Path Network for Multi-Property Molecular Optimization [77.79862482208326]
InversionGNN is an effective yet sample-efficient dual-path graph neural network (GNN) for multi-objective drug discovery.
We train the model for multi-property prediction to acquire knowledge of the optimal combination of functional groups.
Then the learned chemical knowledge helps the inversion generation path to generate molecules with required properties.
arXiv Detail & Related papers (2025-03-03T12:53:36Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
We present DiffMS, a formula-restricted encoder-decoder generative network that achieves state-of-the-art performance on this task.<n>To develop a robust decoder that bridges latent embeddings and molecular structures, we pretrain the diffusion decoder with fingerprint-structure pairs.<n>Experiments on established benchmarks show that DiffMS outperforms existing models on de novo molecule generation.
arXiv Detail & Related papers (2025-02-13T18:29:48Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area [50.15254966969718]
We introduce textbfChemVLM, an open-source chemical multimodal large language model for chemical applications.
ChemVLM is trained on a carefully curated bilingual dataset that enhances its ability to understand both textual and visual chemical information.
We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks.
arXiv Detail & Related papers (2024-08-14T01:16:40Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
We introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling.
This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space.
The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously.
arXiv Detail & Related papers (2024-04-05T17:15:48Z) - MolTC: Towards Molecular Relational Modeling In Language Models [28.960416816491392]
We propose a novel framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory termed MolTC.
Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines.
arXiv Detail & Related papers (2024-02-06T07:51:56Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
This work introduces several new generative adversarial network models based on engineering integration of parametrized quantum circuits into known molecular generative adversarial networks.
The introduced machine learning models incorporate a new multi- parameter reward function grounded in reinforcement learning principles.
arXiv Detail & Related papers (2023-12-28T14:10:26Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Molecular Joint Representation Learning via Multi-modal Information [11.493011069441188]
We propose a novel framework of molecular joint representation learning via Multi-Modal information of SMILES and molecular Graphs, called MMSG.
We improve the self-attention mechanism by introducing bond level graph representation as attention bias in Transformer.
We further propose a Bidirectional Message Communication Graph Neural Network (BMC GNN) to strengthen the information flow aggregated from graphs for further combination.
arXiv Detail & Related papers (2022-11-25T11:53:23Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.