論文の概要: An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making
- arxiv url: http://arxiv.org/abs/2311.06972v1
- Date: Sun, 12 Nov 2023 21:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 16:04:00.956090
- Title: An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making
- Title(参考訳): 逐次意思決定のための拡張可能な機械学習最適化フレームワーク
- Authors: Dogacan Yilmaz and \.I. Esra B\"uy\"uktahtak{\i}n
- Abstract要約: 逐次的意思決定問題を効率的に解決する統合予測最適化(PredOpt)フレームワークを提案する。
本稿では,機械学習(ML)における逐次依存,実現可能性,一般化といった課題に対処し,インスタンス問題に対する最適解の予測を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an integrated prediction-optimization (PredOpt) framework to
efficiently solve sequential decision-making problems by predicting the values
of binary decision variables in an optimal solution. We address the key issues
of sequential dependence, infeasibility, and generalization in machine learning
(ML) to make predictions for optimal solutions to combinatorial problems. The
sequential nature of the combinatorial optimization problems considered is
captured with recurrent neural networks and a sliding-attention window. We
integrate an attention-based encoder-decoder neural network architecture with
an infeasibility-elimination and generalization framework to learn high-quality
feasible solutions to time-dependent optimization problems. In this framework,
the required level of predictions is optimized to eliminate the infeasibility
of the ML predictions. These predictions are then fixed in mixed-integer
programming (MIP) problems to solve them quickly with the aid of a commercial
solver. We demonstrate our approach to tackling the two well-known dynamic
NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and
multi-dimensional knapsack (MSMK). Our results show that models trained on
shorter and smaller-dimensional instances can be successfully used to predict
longer and larger-dimensional problems. The solution time can be reduced by
three orders of magnitude with an average optimality gap below 0.1%. We compare
PredOpt with various specially designed heuristics and show that our framework
outperforms them. PredOpt can be advantageous for solving dynamic MIP problems
that need to be solved instantly and repetitively.
- Abstract(参考訳): 最適解における二項決定変数の値を予測することにより、逐次決定問題を効率的に解決する統合予測最適化(PredOpt)フレームワークを提案する。
本稿では,機械学習(ML)における逐次依存,実現可能性,一般化といった課題に対処し,組合せ問題に対する最適解の予測を行う。
組合せ最適化問題の逐次的性質は、繰り返しニューラルネットワークとスライディングアテンションウインドウで把握される。
我々は,注意に基づくエンコーダ・デコーダニューラルネットワークアーキテクチャと,実現可能性排除・一般化フレームワークを統合し,時間依存最適化問題に対する高品質な実現可能な解法を学習する。
このフレームワークでは、ML予測の可能性を排除するために、必要なレベルの予測が最適化される。
これらの予測は、MIP(Mixed-Integer Programming)問題で修正され、商用の問題解決者によって迅速に解決される。
MCLSP(Multi-item capacitated lot-size)とMSMK(Multi-dimensional knapsack)という2つのよく知られた動的NP-Hard最適化問題に対処するアプローチを実証する。
その結果,より短小のインスタンスで学習したモデルを用いて,より長大な問題を予測することができた。
解の時間は、平均最適性ギャップが0.1%未満の3桁に縮めることができる。
PredOptと様々な設計のヒューリスティックスを比較し、我々のフレームワークがそれらより優れていることを示す。
PredOptは、即座に反復的に解決する必要がある動的なMIP問題を解決するのに有利である。
関連論文リスト
- Towards graph neural networks for provably solving convex optimization problems [5.966097889241178]
提案するMPNNフレームワークは,検証可能な実現可能性保証を用いて凸最適化問題を解決する。
実験の結果,提案手法は既存の神経ベースラインよりも解の質や実現可能性に優れていた。
論文 参考訳(メタデータ) (2025-02-04T16:11:41Z) - Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
制約付き最適化のための学習型反復解法を提案する。
解法を特定のパラメトリック最適化問題にカスタマイズすることで、非常に高速で正確な解を得ることができる。
最適性のKarush-Kuhn-Tucker条件に基づく新しい損失関数を導入し、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-09-12T14:17:23Z) - Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality [0.0]
この研究は、Mixed-Integer Programmingに固有の計算複雑性に対処するフレームワークを導入する。
ディープラーニングを利用することで、MIPインスタンス間の共通構造を特定し、活用する問題固有モデルを構築する。
本稿では,モデルの堅牢性と一般化性を高める合成データを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-17T19:15:13Z) - MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers [13.790116387956703]
混合整数プログラミング(MIP)技術は最適化問題の定式化と解法を提供する。
MIP-GNNは、データ駆動の洞察でそのような問題を解決するための一般的なフレームワークである。
MIP-GNNを最先端のMIP解決器に統合し,ノード選択やウォームスタートといったタスクに適用する。
論文 参考訳(メタデータ) (2022-05-27T19:34:14Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
インクリメンタルサポートベクトルマシン(ISVM)に基づく新しい予測アルゴリズムを提案する。
動的多目的最適化問題(DMOP)の解決をオンライン学習プロセスとして扱う。
提案アルゴリズムは動的多目的最適化問題に効果的に取り組むことができる。
論文 参考訳(メタデータ) (2021-02-24T08:51:23Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。